en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曾文文,女,山东青岛人,教授,研究员,主要从事中枢-外周代谢器官的链接在能量稳态和失衡中的调控功能,神经免疫反应的病理生理基础方面的研究,E-mail:wenwenzeng@tsinghua.edu.cn

通讯作者:

曾文文,女,山东青岛人,教授,研究员,主要从事中枢-外周代谢器官的链接在能量稳态和失衡中的调控功能,神经免疫反应的病理生理基础方面的研究,E-mail:wenwenzeng@tsinghua.edu.cn

中图分类号:R563,R392

文献标识码:A

文章编号:2096-8965(2024)02-0100-11

DOI:10.12287/j.issn.2096-8965.20240212

参考文献 1
TRAVAGLINI K J,NABHAN A N,PENLAND L,et al.A molecular cell atlas of the human lung from single-cell RNA sequencing[J].Nature,2020,587(7835):619-625.
参考文献 2
HO C Y,GU Q,LIN Y S,et al.Sensitivity of vagal afferent endings to chemical irritants in the rat lung[J].Respiration Physiology,2001,127(2-3):113-124.
参考文献 3
CANNING B J,FARMER D G,MORI N.Mechanistic studies of acid-evoked coughing in anesthetized guineapigs[J].American Journal of Physiology,2006,291(2):R454-R463.
参考文献 4
CATERINA M J,SCHUMACHER M A,TOMINAGA M,et al.The capsaicin receptor:A heat-activated ion channel in the pain pathway[J].Nature,1997,389(6653):816-824.
参考文献 5
BIN N R,PRESCOTT S L,HORIO N,et al.An airway-tobrain sensory pathway mediates influenza-induced sickness [J].Nature,2023,615(7953):660-667.
参考文献 6
TAMARI M,DEL BEL K L,VER HEUL A M,et al.Sensory neurons promote immune homeostasis in the lung [J].Cell,2024,187(1):44-61.e17.
参考文献 7
MAGGI C A.Tachykinins and calcitonin gene-related peptide(CGRP)as co-transmitters released from peripheral endings of sensory nerves[J].Progress in Neurobiology,1995,45(1):1-98.
参考文献 8
VOISIN T,BOUVIER A,CHIU I M.Neuro-immune interactions in allergic diseases:Novel targets for therapeutics[J].International Immunology,2017,29(6):247-261.
参考文献 9
KLEIN WOLTERINK R G J,WU G S,CHIU I M,et al.Neuroimmune interactions in peripheral organs[J].Annual Review of Neuroscience,2022,45:339-360.
参考文献 10
HUH J R,VEIGA-FERNANDES H.Neuroimmune circuits in inter-organ communication[J].Nature Reviews Immunology,2020,20(4):217-228.
参考文献 11
SCHILLER M,BEN-SHAANAN T L,ROLLS A.Neuronal regulation of immunity:Why,how and where?[J].Nature Reviews Immunology,2021,21(1):20-36.
参考文献 12
KORNFIELD J,DE LA TORRE U,MIZE E,et al.Illuminating airway nerve structure and function in chronic cough[J].Lung,2023,201(6):499-509.
参考文献 13
LIU T,YANG L,HAN X,et al.Local sympathetic innervations modulate the lung innate immune responses [J].Science Advances,2020,6(20):eaay1497.
参考文献 14
HAJIASGHARZADEH K,SADIGH-ETEGHAD S,MANSOORI B,et al.Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis:Friends or foes?[J].Journal of Cellular Physiology,2019,234(9):14666-14679.
参考文献 15
CREMIN M,SCHREIBER S,MURRAY K,et al.The diversity of neuroimmune circuits controlling lung inflammation[J].American Journal of Physiology,2023,324(1):L53-L63.
参考文献 16
MADISSOON E,OLIVER A J,KLESHCHEVNIKOV V,et al.A spatially resolved atlas of the human lung characterizes a gland-associated immune niche[J].Nature Genetics,2023,55(1):66-77.
参考文献 17
GOPALLAWA I,DEHINWAL R,BHATIA V,et al.A four-part guide to lung immunology:Invasion,inflammation,immunity,and intervention[J].Frontiers in Immunology,2023,14:1119564.
参考文献 18
ZAZARA D E,BELIOS I,LÜCKE J,et al.Tissue-resident immunity in the lung:A first-line defense at the environmental interface[J].Seminars in Immunopathology,2022,44(6):827-854.
参考文献 19
CHO S J,STOUT-DELGADO H W.Aging and lung disease[J].Annual Review of Physiology,2020,82:433-459.
参考文献 20
BISSONNETTE E Y,LAUZON-JOSET J F,DEBLEY J S,et al.Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis [J].Frontiers in Immunology,2020,11:583042.
参考文献 21
KOPF M,SCHNEIDER C,NOBS S P.The development and function of lung-resident macrophages and dendritic cells[J].Nature Immunology,2015,16(1):36-44.
参考文献 22
ZILTENER P,REINHECKEL T,OXENIUS A.Neutro‐ phil and alveolar macrophage-mediated innate immune control of legionella pneumophila lung infection via TNF and ROS[J].PLoS Pathogens,2016,12(4):e1005591.
参考文献 23
WANG T,ZHANG J,WANG Y,et al.Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs[J].Nature Immunology,2023,24(3):423-438.
参考文献 24
SCHYNS J,BAI Q,RUSCITTI C,et al.Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung[J].Nature Communications,2019,10(1):3964.
参考文献 25
URAL B B,YEUNG S T,DAMANI-YOKOTA P,et al.Identification of a nerve-associated,lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties[J].Science Immunology,2020,5(45):eaax8756.
参考文献 26
AKDIS C A,ARKWRIGHT P D,BRÜGGEN M C,et al.Type 2 immunity in the skin and lungs[J].Allergy,2020,75(7):1582-1605.
参考文献 27
TOJIMA I,MATSUMOTO K,KIKUOKA H,et al.Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis[J].Allergy,2019,74(12):2417-2426.
参考文献 28
HAMMAD H,LAMBRECHT B N.The basic immunology of asthma[J].Cell,2021,184(6):1469-1485.
参考文献 29
CAYROL C,GIRARD J P.Interleukin-33(IL-33):A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine[J].Cytokine,2022,156:155891.
参考文献 30
YIN Z,ZHOU Y,TURNQUIST H R,et al.Neuroepithelial-ILC2 crosstalk in barrier tissues[J].Trends in Immunology,2022,43(11):901-916.
参考文献 31
SNYDER M E,FARBER D L.Human lung tissue resident memory T cells in health and disease[J].Current Opinion in Immunology,2019,59:101-108.
参考文献 32
YUAN R,YU J,JIAO Z,et al.The roles of tissueresident memory T cells in lung diseases[J].Frontiers in Immunology,2021,12:710375.
参考文献 33
LUO W,HU J,XU W,et al.Distinct spatial and temporal roles for Th1,Th2 and Th17 cells in asthma[J].Frontiers in Immunology,2022,13:974066.
参考文献 34
KOLAHIAN S,FERNANDEZ I E,EICKELBERG O,et al.Immune mechanisms in pulmonary fibrosis[J].American Journal of Respiratory Cell and Molecular Biology,2016,55(3):309-322.
参考文献 35
THOMAS R,QIAO S,YANG X.Th17/Treg imbalance:Implications in lung inflammatory diseases[J].International Journal of Molecular Sciences,2023,24(5):4865.
参考文献 36
GUAN T,ZHOU X,ZHOU W,et al.Regulatory T cell and macrophage crosstalk in acute lung injury:Future perspectives[J].Cell Death Discovery,2023,9(1):9.
参考文献 37
SHENOY A T,LYON DE ANA C,ARAFA E I,et al.Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity[J].Nature Communications,2021,12(1):5834.
参考文献 38
BURGOYNE R A,FISHER A J,BORTHWICK L A.The role of epithelial damage in the pulmonary immune response[J].Cells,2021,10(10):2763.
参考文献 39
HEWITT R J,LLOYD C M.Regulation of immune responses by the airway epithelial cell landscape[J].Nature Reviews Immunology,2021,21(6):347-362.
参考文献 40
KUO C S,KRASNOW M A.Formation of a neurosensory organ by epithelial cell slithering[J].Cell,2015,163(2):394-405.
参考文献 41
XU J,YU H,SUN X.Less is more:Rare pulmonary neuroendocrine cells function as critical sensors in lung [J].Developmental Cell,2020,55(2):123-132.
参考文献 42
SUI P,WIESNER D L,XU J,et al.Pulmonary neuroendocrine cells amplify allergic asthma responses [J].Science,2018,360(6393):eaan8546.
参考文献 43
CHANG R B,STROCHLIC D E,WILLIAMS E K,et al.Vagal sensory neuron subtypes that differentially control breathing[J].Cell,2015,161(3):622-633.
参考文献 44
ADRIAENSEN D,TIMMERMANS J P,BROUNS I,et al.Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies:An anterograde tracing and confocal microscopy study in adult rats[J].Cell and Tissue Research,1998,293(3):395-405.
参考文献 45
GU X,KARP P H,BRODY S L,et al.Chemosensory functions for pulmonary neuroendocrine cells[J].American Journal of Respiratory Cell and Molecular Biology,2014,50(3):637-646.
参考文献 46
BROUNS I,OZTAY F,PINTELON I,et al.Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs[J].Histochemistry and Cell Biology,2009,131(1):55-74.
参考文献 47
SEEHOLZER L F,JULIUS D.Neuroendocrine cells initiate protective upper airway reflexes[J].Science,2024,384(6693):295-301.
参考文献 48
KUO C S,DARMANIS S,DIAZ DE ARCE A,et al.Neuroendocrinology of the lung revealed by single-cell RNA sequencing[J].eLife,2022,11:e78216.
参考文献 49
SHIREY K A,LAI W,SUNDAY M E,et al.Novel neuroendocrine role of γ-aminobutyric acid and gastrinreleasing peptide in the host response to influenza infection [J].Mucosal Immunology,2023,16(3):302-311.
参考文献 50
CACERES A I,BRACKMANN M,ELIA M D,et al.A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(22):9099-9104.
参考文献 51
BARAL P,UMANS B D,LI L,et al.Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J].Nature Medicine,2018,24(4):417-426.
参考文献 52
BARRIOS J,PATEL K R,AVEN L,et al.Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion[J].The FASEB Journal,2017,31(9):4117-4128.
参考文献 53
NADjSOMBATI M S,MCGINTY J W,LYONS-COHEN M R,et al.Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit[J].Immunity,2018,49(1):33-41.e7.
参考文献 54
BORNSTEIN C,NEVO S,GILADI A,et al.Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells[J].Nature,2018,559(7715):622-626.
参考文献 55
BEZENÇON C,FÜRHOLZ A,RAYMOND F,et al.Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells[J].The Journal of Comparative Neurology,2008,509(5):514-525.
参考文献 56
MONTORO D T,HABER A L,BITON M,et al.A revised airway epithelial hierarchy includes CFTR-expressing ionocytes[J].Nature,2018,560(7718):319-324.
参考文献 57
BANKOVA L G,DWYER D F,YOSHIMOTO E,et al.The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation[J].Science Immunology,2018,3(28):eaat9453.
参考文献 58
RANE C K,JACKSON S R,PASTORE C F,et al.Development of solitary chemosensory cells in the distallung after severe influenza injury[J].American Journal of Physiology,2019,316(6):L1141-L1149.
参考文献 59
BAINE M K,FEBRES-ALDANA C A,CHANG J C,et al.POU2F3 in SCLC:Clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC[J].Journal of Thoracic Oncology,2022,17(9):1109-1121.
参考文献 60
WU X S,HE X Y,IPSARO J J,et al.OCA-T1 and OCAT2 are coactivators of POU2F3 in the tuft cell lineage[J].Nature,2022,607(7917):169-175.
参考文献 61
YUAN F,GASSER G N,LEMIRE E,et al.Transgenic ferret models define pulmonary ionocyte diversity and function[J].Nature,2023,621(7980):857-867.
参考文献 62
HOLLENHORST M I,KRASTEVA-CHRIST G.Chemo‐ sensory cells in the respiratory tract as crucial regulators of innate immune responses[J].The Journal of Physiology,2023,601(9):1555-1572.
参考文献 63
KNOOP K A,NEWBERRY R D.Goblet cells:Multifaceted players in immunity at mucosal surfaces[J].Mucosal Immunology,2018,11(6):1551-1557.
参考文献 64
VIEIRA BRAGA F A,KAR G,BERG M,et al.A cellular census of human lungs identifies novel cell states in health and in asthma[J].Nature Medicine,2019,25(7):1153-1163.
参考文献 65
CARRER M,CROSBY J R,SUN G,et al.Antisense oligonucleotides targeting jagged 1 reduce house dust mite-induced goblet cell metaplasia in the adult murine lung[J].American Journal of Respiratory Cell and Molecular Biology,2020,63(1):46-56.
参考文献 66
HICKS-BERTHET J,NING B,FEDERICO A,et al.Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis[J].Cell Reports,2021,36(2):109347.
参考文献 67
KIM H T,YIN W,NAKAMICHI Y,et al.WNT/RYK signaling restricts goblet cell differentiation during lung development and repair[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25697-25706.
参考文献 68
OSAN J,TALUKDAR S N,FELDMANN F,et al.Goblet cell hyperplasia increases SARS-CoV-2 infection in chronic obstructive pulmonary disease[J].Microbiology Spectrum,2022,10(4):e0045922.
参考文献 69
DE VIRGILIIS F,DI GIOVANNI S.Lung innervation in the eye of a cytokine storm:Neuroimmune interactions and COVID-19[J].Nature Reviews Neurology,2020,16(11):645-652.
参考文献 70
REN W,CHEN J,WANG W,et al.Sympathetic nerveenteroendocrine L cell communication modulates GLP-1 release,brain glucose utilization,and cognitive function [J].Neuron,2024,112(6):972-990.e8.
参考文献 71
REN W,HUA M,CAO F,et al.The sympathetic-immune milieu in metabolic health and diseases:Insights from pancreas,liver,intestine,and adipose tissues[J].Advanced Science,2024,11(8):e2306128.
参考文献 72
TRÄNKNER D,HAHNE N,SUGINO K,et al.Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(31):11515-11520.
参考文献 73
TALBOT S,ABDULNOUR R E E,BURKETT P R,et al.Silencing nociceptor neurons reduces allergic airway inflammation[J].Neuron,2015,87(2):341-354.
参考文献 74
WALLRAPP A,RIESENFELD S J,BURKETT P R,et al.The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation[J].Nature,2017,549(7672):351-356.
参考文献 75
LU Y,HUANG Y,LI J,et al.Eosinophil extracellular traps drive asthma progression through neuro-immune signals[J].Nature Cell Biology,2021,23(10):1060-1072.
参考文献 76
LE D D,SCHMIT D,HECK S,et al.Increase of mast cell-nerve association and neuropeptide receptor expression on mast cells in perennial allergic rhinitis[J].Neuro‐ immunomodulation,2016,23(5-6):261-270.
参考文献 77
CYPHERT J M,KOVAROVA M,ALLEN I C,et al.Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction[J].Journal of Immunology,2009,182(12):7430-7439.
参考文献 78
ROVIEZZO F,SORRENTINO R,BERTOLINO A,et al.S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo:molecular and cellular mechanisms[J].British Journal of Pharmacology,2015,172(7):1882-1893.
参考文献 79
LI J N,LI X L,HE J,et al.Sex-and afferent-specific differences in histamine receptor expression in vagal afferents of rats:A potential mechanism for sexual dimorphism in prevalence and severity of asthma[J].Neuroscience,2015,303:166-177.
参考文献 80
LI D,WU J,XIONG X.The role of the acetylcholine system in common respiratory diseases and COVID-19 [J].Molecules,2023,28(3):1139.
参考文献 81
KUMMER W,LIPS K S,PFEIL U.The epithelial cholinergic system of the airways[J].Histochemistry and Cell Biology,2008,130(2):219-234.
参考文献 82
DRAKE M G,LEBOLD K M,ROTH-CARTER Q R,et al.Eosinophil and airway nerve interactions in asthma[J].Journal of Leukocyte Biology,2018,104(1):61-67.
参考文献 83
SATO E,KOYAMA S,OKUBO Y,et al.Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity[J].The American Journal of Physiology,1998,274(6):L970-L979.
参考文献 84
DRAGUNAS G,WOEST M E,NIJBOER S,et al.Cholinergic neuroplasticity in asthma driven by TrkB signaling[J].The FASEB Journal,2020,34(6):7703-7717.
参考文献 85
GALLE-TREGER L,SUZUKI Y,PATEL N,et al.Nicotinic acetylcholine receptor agonist attenuates ILC2-de‐ pendent airway hyperreactivity[J].Nature Communications,2016,7:13202.
参考文献 86
PELAIA C,CRIMI C,CRIMI N,et al.Indacaterol/glycopyrronium/mometasone fixed dose combination for uncontrolled asthma[J].Expert Review of Respiratory Medicine,2022,16(2):183-195.
参考文献 87
MORIYAMA S,BRESTOFF J R,FLAMAR A L,et al.β 2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses[J].Science,2018,359(6379):1056-1061.
参考文献 88
GRANTON E,BROWN L,DEFAYE M,et al.Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection[J].Cell,2024,187(8):1874-1888.e14.
参考文献 89
NAHAMA A,RAMACHANDRAN R,CISTERNAS A F,et al.The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis:A review[J].Medicine in Drug Discovery,2020,5:100033.
参考文献 90
GREBE K M,TAKEDA K,HICKMAN H D,et al.Cutting edge:Sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis[J].Journal of Immunology,2010,184(2):540-544.
参考文献 91
AL-KURAISHY H M,AL-GAREEB A I,MOSTAFAHEDEAB G,et al.Effects of β-Blockers on the sympathetic and cytokines storms in COVID-19[J].Frontiers in Immunology,2021,12:749291.
参考文献 92
BOROVIKOVA L V,IVANOVA S,ZHANG M,et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J].Nature,2000,405(6785):458-462.
参考文献 93
WANG H,YU M,OCHANI M,et al.Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation[J].Nature,2003,421(6921):384-388.
参考文献 94
SU X,MATTHAY M A,MALIK A B.Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury[J].Journal of Immunology,2010,184(1):401-410.
参考文献 95
ZANG N,LI S,LI W,et al.Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice[J].International Immunopharmacology,2015,28(1):121-128.
参考文献 96
CONNOLLY E,MORGAN D J,FRANKLIN M,et al.Neurturin regulates the lung-resident macrophage inflammatory response to viral infection[J].Life Science Alliance,2020,3(12):e202000780.
参考文献 97
JI L,XU F,ZHANG J,et al.ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma[J].Scientific Reports,2022,12(1):15994.
参考文献 98
KAIRA K,KAMIYOSHIHARA M,KAWASHIMA O,et al.Prognostic impact of β2 adrenergic receptor expression in surgically resected pulmonary pleomorphic carcinoma[J].Anticancer Research,2019,39(1):395-403.
参考文献 99
YAZAWA T,KAIRA K,SHIMIZU K,et al.Prognostic significance of β2-adrenergic receptor expression in nonsmall cell lung cancer[J].American Journal of Translational Research,2016,8(11):5059-5070.
参考文献 100
NILSSON M B,LE X,HEYMACH J V.β-adrenergic signaling in lung cancer:A potential role for beta-blockers [J].Journal of Neuroimmune Pharmacology,2020,15(1):27-36.
参考文献 101
XIA Y,WEI Y,LI Z Y,et al.Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages[J].Brain,Behavior and Immunity,2019,81:111-121.
参考文献 102
XU Y,WANG J,WANG X,et al.Targeting ADRB2 enhances sensitivity of non-small cell lung cancer to VEGFR2 tyrosine kinase inhibitors[J].Cell Death Discovery,2022,8(1):36.
参考文献 103
SONG P,SEKHON H S,JIA Y,et al.Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma[J].Cancer Research,2003,63(1):214-221.
参考文献 104
LIN G,SUN L,WANG R,et al.Overexpression of muscarinic receptor 3 promotes metastasis and predicts poor prognosis in non-small-cell lung cancer[J].Journal of Thoracic Oncology,2014,9(2):170-178.
参考文献 105
SCHMITT A,SAKTHIVELU V,NDOCI K,et al.(2023).Functional synapses between small cell lung cancer and glutamatergic neurons.bioRxiv.https://doi.org/10.1101/2023.01.19.524045.
参考文献 106
DE COUCK M,CAERS R,SPIEGEL D,et al.The role of the vagus nerve in cancer prognosis:A systematic and a comprehensive review[J].Journal of Oncology,2018,2018:1236787.
参考文献 107
CHRISTENSON S A,SMITH B M,BAFADHEL M,et al.Chronic obstructive pulmonary disease[J].Lancet,2022,399(10342):2227-2242.
参考文献 108
VANZELLA L M,BERNARDO A F B,CARVALHO T D DE,et al.Complexity of autonomic nervous system function in individuals with COPD[J].Jornal Brasileiro De Pneumologia,2018,44(1):24-30.
参考文献 109
CAMP B,STEGEMANN-KONISZEWSKI S,SCHREIBER J.Infection-aassociated mechanisms of neuro-inflammation and neuro-immune crosstalk in chronic respiratory diseases [J].International Journal of Molecular Sciences,2021,22(11):5699.
参考文献 110
URAKOVA M A,BRYNDINA I G.Water balance of lung and nitrogen oxide in blood at experimental autoim‐ mune encephalomyelitis after capsaicin blockade of vagus nerve[J].Patol Fiziol Eksp Ter,2016,60(3):18-22.
参考文献 111
KOLAHIAN S,GOSENS R.Cholinergic regulation of airway inflammation and remodelling[J].Journal of Allergy,2012,2012:681258.
参考文献 112
WOLLIN L,PIEPER M P.Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD[J].Pulmonary Pharmacology & Therapeutics,2010,23(4):345-354.
参考文献 113
TOUMPANAKIS D,LOVERDOS K,TZOUDA V,et al.Tiotropium bromide exerts anti-inflammatory effects during resistive breathing,an experimental model of severe airway obstruction[J].International Journal of Chronic Obstructive,2017,12:2207-2220.
参考文献 114
NOGUCHI M,FURUKAWA K T,MORIMOTO M.Pulmonary neuroendocrine cells:Physiology,tissue homeostasis and disease[J].Disease Models & Mechanisms,2020,13(12):dmm046920.
目录contents

    摘要

    免疫系统和神经系统在器官内部或跨器官之间的互动关系越来越受到关注。这种互动不仅在科学研究中得到证实,也在日常生活中有所体现:当组织损伤或者感染时,常见的红肿、疼痛等症状即为免疫系统和神经系统相互作用的结果;在肺炎或肺部感染等疾病情况下,患者常出现嗜睡、疲劳以及食欲减退等现象。肺作为人体重要的呼吸器官,通过其独特的结构和组织进行气体交换,同时肺也是机体抵御病原体入侵的第一道防线。免疫系统和神经系统对于肺的功能和稳态维持发挥重要的调控作用,影响多种呼吸道疾病的发生和进展。本文着重关注近期肺相关免疫系统和神经系统的互动研究进展,以期启示干预神经系统和免疫系统网络在呼吸道疾病治疗中的潜在应用。

    Abstract

    The interaction between the immune system and the nervous system within and across organs has garnered increasing attention in the scientific community. Studies confirm that this interaction manifests not only in research but also in daily life: common symptoms such as swelling and pain during tissue damage or infection result from the mutual interactions between these systems. In conditions such as pneumonia or pulmonary infections, patients often experience symptoms like drowsiness, fatigue, and reduced appetite. The lungs, being vital respiratory organs, facilitate gas exchange through their unique structure and tissues, while also serving as the body's primary defense against pathogen invasion. The immune system and nervous system play pivotal roles in regulating lung function and maintaining homeostasis, influencing the onset and progression of variousrespiratory diseases. This article emphasizes recent advancements in understanding neuroimmune interactions specifically related to the lungs, aiming to illuminate potential applications for modulating the neuroimmune network in the treatment of respiratory diseases.

  • 肺是呼吸系统的重要器官,分为气道和肺泡两部分,由多种细胞组成,包括排列在气道和肺泡管腔表面的上皮细胞,以及基质细胞、内皮细胞和免疫细胞等[1]。肺内有丰富的传入和传出神经支配,与肺内细胞共同支持肺功能,使其成为呼吸和气体交换的重要场所,同时构成机体抵御病原体的第一道防线。本文将概述肺中免疫系统和神经系统的细胞互作网络,着重阐述不同呼吸系统疾病中神经免疫互作的调控功能。

  • 1 肺神经支配

  • 肺的感觉神经支配源自迷走与躯体感觉神经。肺部感觉神经能够感知吸入和内源性化合物以及 pH 值、温度和渗透压的变化,接受来自炎症环境的免疫细胞分泌的细胞因子信号,改变神经元动作电位和疼痛敏感性[2-4]。近期研究提示,感觉神经在免疫反应中发挥重要的调节作用[5-6]。例如,降钙素基因相关肽 (Calcitonin Gene Related Peptide, CGRP) 和P物质 (Substance P,SP) 可从感觉神经元的内脏器官端释放,调节下游的免疫细胞反应[7-8]

  • 肺部同时接受交感和副交感神经支配[9-11]。交感神经末梢可见于肺上皮细胞间,部分副交感神经节也分布在此处[12]。去甲肾上腺素 (Norepinepherine,NE) 和乙酰胆碱 (Acetylcholine,ACh) 分别是交感和副交感神经系统的主要神经递质,它们在免疫系统的调控中起重要作用。NE 可抑制过强的免疫反应,防止机体过度炎症甚至死亡[13]。副交感神经节后纤维处多为 M 型乙酰胆碱受体 (也称为毒蕈碱受体),而研究提示,N 型乙酰胆碱受体 (也称为烟碱受体) 在多种病理过程中发挥作用,参与了炎症和癌症的发生和进展[14-15],提示副交感神经可能通过多种方式调控免疫相关的疾病状态 (见图1)。

  • 2 肺免疫细胞

  • 肺不仅是关键的呼吸器官,且具有重要的免疫屏障功能。肺部免疫细胞的类型多样,包括循环、驻留等多种形式存在的细胞[1]。多组学技术构建的人肺空间细胞图谱发现,不同类型的免疫细胞共同构成与疾病相关的免疫生态位,有助于对抗呼吸道感染[16]。此前针对肺部免疫细胞的相关综述已相对完善[17-19],因此,本文将示例描述在不同肺部疾病中发挥重要功能的免疫细胞类群。

  • 图1 肺的神经支配

  • Figure1 Innervation of the lung tissues

  • 巨噬细胞在肺部呈现高度异质性,对于维持肺稳态必不可少[20]。肺泡巨噬细胞 (Alveolar Macrophage,AM) 位于气液界面,在预防和消除肺部感染方面发挥重要作用[21]。AM 能够直接通过吞噬或分泌炎性细胞因子和趋化因子招募中性粒细胞消灭病原体[22]。研究发现,流感病毒感染诱导的记忆性肺泡巨噬细胞具有组织特异性抗肿瘤作用[23]。测序数据表明,肺部常驻间质巨噬细胞具有不同亚群,并在呼吸系统疾病发展中具有不同作用[24]。新近针对肺部的神经和免疫细胞的分型及空间定位研究鉴定出了新的肺内巨噬细胞亚型,称为“神经-气道相关巨噬细胞 (Nerve and Airway associated Macrophages,NAMs) ”。NAMs被发现在病毒感染的过程中抑制过度的免疫反应和细胞因子风暴[25]。不同于常见的免疫细胞功能,它能直接清除病毒,这类巨噬细胞或许起到了类似沟通神经元与免疫细胞的功能。

  • 大多数慢性鼻窦炎和哮喘患者出现2型炎症通路的过度上调[26]。上皮细胞被过敏原、病原等激活后释放胸腺基质淋巴细胞生成素、IL-33 或 IL-25,进而激活 2 型辅助性 T 细胞 (T helper 2 cell,Th2) 和 2 型天然淋巴样细胞 (Group 2 Innate Lymphoid Cells,ILC2) 细胞,促进 2型免疫反应[27]。相关下游信号通路已有较多报道与总结[28-29]。ILC2被认为在屏障组织神经-上皮-免疫交互网络中发挥整合信息的核心作用,进而调节组织微环境和炎症进程[30]。除此之外,神经与免疫系统在 2型免疫反应中的其他关键细胞类群互动有待进一步探究。

  • CD4+ 和 CD8+ T 细胞是肺部重要适应性免疫细胞类群,参与病原体的清除,并且记忆T细胞持续存在[31]。研究发现,肺组织驻留记忆T细胞在减缓癌变和防止实体瘤扩散方面起重要作用,但其可以促进病理性炎症,引起哮喘和纤维化等疾病[32]。在 CD4+T细胞亚群中,Th1与Th2以及Th17与调节性 T细胞 (Regulatory T cells,Treg) 的平衡被发现在哮喘、慢性阻塞性肺疾病、急性呼吸窘迫综合征等多种呼吸道疾病中起到重要作用[33-35],并可能作为相关治疗靶点。也有研究认为,Treg与巨噬细胞的互作在急性肺损伤疾病中具有重要作用[36]。尽管目前关于肺T细胞与神经系统互作的研究较少,但随着新的高时空分辨率组学技术的不断涌现,肺部免疫微环境被进一步深度解析,肺部层面的图谱可为免疫细胞与神经系统的互作关系提供新的证据。

  • 3 肺特化上皮细胞

  • 肺上皮细胞作为肺部免疫防线的重要组成部分,可协调天然免疫应答损伤以及随后的修复过程,研究表明,肺特化上皮细胞与神经系统或免疫细胞共同作用,参与多种肺部疾病[37-39]

  • 肺神经内分泌细胞 (Pulmonary Neuroendocrine Cells,PNECs) 是一类稀少的气道上皮细胞,呈现独特的神经元和内分泌细胞特征[40]。在啮齿动物中,5~20 个 PNECs 驻留在一处形成神经上皮体 (Neuroepithelial Bodies,NEBs) [41]。NEBs 临近肺驻留免疫细胞例如 ILC2[42],受到包括迷走感觉神经元和躯体感觉神经元的调控[43-44]。该神经-上皮ILC2 单元被认为在呼吸道疾病尤其是肺损伤和哮喘中发挥重要作用[30]。嘌呤能受体 P2Y1 (Purinergic Receptor P2Y1, P2RY1)、神经肽 Y 受体 Y2 (Neuropeptide Y Receptor Y2,NPY2R) 阳性的神经原纤维可以在 PNECs 附近响应其产生的 CGRP、 γ-氨基丁酸 (γ-Aminobutyric Acid,GABA)、5-羟色胺等信号因子,并进一步传递到中枢[45-46]。同时,肺部的PNECs表达机械敏感离子通道Piezo2,可对机械输入发生响应,并通过与迷走神经感觉神经元的沟通促进保护性反应[47]。单细胞测序发现, PNECs表达超过四十种神经肽或相关基因[48],靶向肺内或其他器官的细胞类型,影响免疫应答过程。例如病毒感染时,PNECs释放GABA,继而激活细胞上的相应受体促进胃泌素释放肽的分泌,导致啮齿动物模型中流感诱导的致死性和炎症反应升高[49]。PNECs 缺失可引起肺内 CGRP 和 GABA 减少,进而影响对某些细菌感染的防御能力[50-51]。在过敏性哮喘中,PNECs 的缺失可引起 ILC2、嗜酸性粒细胞和Th2细胞减少,杯状细胞增生受阻[4252]。 PNECs在慢性阻塞性肺病中可能改变其神经肽的分泌,从而调节 PNECs 依赖的肺化学反应性变化,影响疾病进程[45]。以上研究表明,PNECs作为重要的肺部内分泌细胞,在调控免疫应答和神经免疫中发挥重要功能。

  • 簇细胞又称刷状细胞或孤立化学感受细胞,具备感觉和分泌的双重功能,对机体的健康和疾病状态有着重要的影响[53-56]。簇细胞的功能主要体现在其感受和响应化学刺激的能力。在呼吸系统中,簇细胞主要分布于气管。单细胞分析结果显示,气道的簇细胞可分为主要表达味觉基因的类型和主要表达免疫相关基因的类型[56]。空气中的过敏原,如花粉和尘螨等通过吸入进入呼吸系统后,可引发簇细胞的增殖。作为 IL-25的主要来源,簇细胞通过分泌IL-25可促进2型免疫细胞的活化和增殖[57],这一机制在过敏性疾病和哮喘的发展中尤为重要。簇细胞在抗病毒免疫反应中也发挥重要功能。例如在流感病毒感染后簇细胞数量显著增加,这一增加与感染后血浆外渗的严重性密切相关,表明簇细胞可能通过调节炎症反应,影响病毒感染的严重程度和恢复过程[58]。此外,在肺癌[59-60]、肺纤维化[5661] 以及细菌或真菌感染[62] 的病理过程中,簇细胞同样展现出其多样化的功能。这些研究进一步证实了簇细胞在肺部稳态和疾病病理中的重要作用,而有关簇细胞参与神经免疫网络的作用有待进一步研究揭示。

  • 杯状细胞是一种特化的上皮细胞,分布于多个黏膜表面,并通过分泌黏液在屏障保护中发挥重要作用[63]。在对健康与哮喘人群样本的单细胞分析中,上皮细胞、基质细胞及免疫细胞的转录组分析显示,哮喘患者中杯状细胞数量显著增加,相关炎症反应和气道重塑活动则更为活跃,黏蛋白基因的表达水平亦显著提高[64]。杯状细胞过度分化和黏液分泌过多的现象不仅限于哮喘[65-66],还包括慢性阻塞性肺病和囊性纤维化等其他多种肺部疾病[67]。虽然杯状细胞发挥促进抗寄生虫感染免疫的作用,但对慢性阻塞性肺病小鼠模型的研究显示,杯状细胞的过度增生可能会增加宿主对病毒例如 COVID-19 的易感性[68],进一步提示肺部免疫应答的复杂调控。杯状细胞作为维持黏膜屏障的关键细胞类群,在神经免疫互作中可能的参与机制,有待进一步研究阐明 (见图2)。

  • 4 肺部疾病中的神经免疫反应及功能

  • “神经免疫单元”这一概念的提出与肠道等多种器官中互作证据的发现,凸显了神经系统和免疫系统之间的紧密联系与相互作用[69-71]。下文将着重综述近期不同呼吸道疾病中的神经免疫互作研究进展。

  • 4.1 过敏性疾病

  • 过敏性疾病是一种常见的呼吸道疾病,其特点是呼吸道对空气中的过敏原如花粉、室内尘螨或霉菌产生强烈的免疫反应。最常见的气道过敏性疾病类型包括过敏性鼻炎和哮喘。这些特应性疾病经常同时发生,表现为流鼻涕、鼻塞、打喷嚏、支气管收缩、咳嗽、喘息和呼吸急促等症状[8]

  • 多项研究发现,伤害感受器与免疫细胞的互作在哮喘发病过程中起到重要促进作用。研究发现, TRPV1+ 的迷走神经元激活增强了哮喘中的气道高反应性,该过程可能是由于这类神经元分泌的神经肽例如CGRP、SP等促进了白细胞浸润与细胞因子及黏液的产生[5072]。针对肺伤害感受器 Nav1.8+ 神经元的研究表明,其在 IL-5 的刺激下产生血管活性肠肽 (Vasoactive Intestinal Peptide,VIP) 进而激活 CD4+ T 细胞和 ILC2,引起正反馈调节并促进哮喘的发生,使用钠离子通道抑制剂阻断 Nav1.8+ 感觉神经元的功能可以减轻病症[73]。还有研究发现,在 IL-25 诱导的过敏反应中,躯体感觉神经 (Dorsal Root Ganglia,DRG) 可能通过释放神经调节肽U (Neuromedin U,NMU),作用于ILC2上的 NMU 受体 1 (Neuromedin U Receptor 1,NMUR1) 发挥作用。在 IL-25 和 NMU 共同刺激的情况下, ILC2 会导致肺内发生严重的过敏反应[74]。除了伤害感受器,PNECs是另一群高表达CGRP的肺内细胞,研究发现,在哮喘发病过程中,嗜酸性粒细胞会释放胞外陷阱 (Eosinophil Extracellular Traps, EETs),激活 PNEC 释放 CGRP 和 GABA,这些神经递质和神经肽进一步促进下游免疫细胞的功能,加剧炎症反应[75]。在呼吸系统中,肥大细胞在过敏性鼻炎中与周围神经元之间互作的证据也逐渐增加[6476]。例如,肥大细胞可影响迷走神经的功能,调控气道的收缩[77]。肥大细胞释放的化学物质如组胺和鞘氨醇-1-磷酸能够作用于迷走感觉神经元,进而影响肺部的神经信号传导和功能调控。这种相互作用可能导致气道炎症和过度激活,增加哮喘等呼吸系统疾病的风险[78-79]

  • 图2 肺特化的上皮细胞

  • Figure2 Specialized lung epithelial cells

  • ACh 作为副交感神经元释放的主要神经递质,作用于毒蕈碱受体和烟碱受体,这两类受体亚基在肺上皮细胞和免疫细胞如巨噬细胞中都有表达。此外,ACh也可由非神经细胞合成,包括气道上皮细胞、神经内分泌细胞等[80]。多数研究认为,气道中的 ACh 可诱导支气管收缩和黏液分泌,并在气道炎症和重塑中有作用[81]。在气道平滑肌 (Airway Smooth Muscle,ASM),ACh 通过激活 M3 型毒蕈碱受体引起支气管收缩。同时,它还能激活 M2型毒蕈碱受体,这种受体具有抑制性作用,能减少 ACh的释放,从而形成一种自我调节的反馈机制,限制过度的支气管收缩。嗜酸性粒细胞可分泌主要碱性蛋白 (Major Basic Protein,MBP) 抑制副交感神经的M2受体,促进ACh释放并使支气管收缩增强[82]。进一步的研究表明,ACh可激活巨噬细胞释放白三烯B4(Leukotriene B4,LTB4),并募集嗜酸性粒细胞和中性粒细胞到气道中,参与炎症反应[83]。对哮喘患者与健康人群中的单核苷酸多样性比较的研究显示,脑源性神经营养因子 (Brain-Derived Neurotrophic Factor,BDNF) 及其受体原肌球蛋白相关激酶受体 B (Tropomyosin receptor kinase B, TrkB) 在哮喘患者气道中的胆碱能神经元网络重塑中发挥重要作用。进一步的研究发现,小鼠在长期暴露于过敏原后,其胆碱能神经元的密度会增加,这一变化是通过 BDNF-TrkB 信号通路实现的[84]。此外,药物激活副交感神经被报道能够抑制肺部的免疫功能,降低由 ILC2 介导的哮喘中的气道过度收缩行为,因此,为该类疾病的治疗提供了一个新的角度[85]

  • 与 ACh作用相反,交感神经元释放的 NE被发现能够通过 ASM 上的 β2 受体促进支气管肌肉松弛。因此,β2 肾上腺素能受体激动剂通常作为支气管扩张剂与糖皮质激素联合使用,以缓解哮喘症状并减轻气道炎症[86]。也有研究发现,NE 能够与 ILC2s表面的β2受体结合,通过负向调节信号通路抑制免疫应答[87]。这些研究结果增进了本领域对哮喘病理生理学的理解,也提示了可能通过调节神经元信号传递控制或治疗哮喘的新途径。

  • 4.2 感染性疾病

  • 研究表明,TRPV1+ 感觉神经元在疾病中的角色,不仅限于哮喘,还涉及其他严重的感染性疾病,如金黄色葡萄球菌引起的致死性肺炎。这类神经元通过调节肺部的CGRP浓度,影响中性粒细胞和γδT细胞的功能,从而抑制这些免疫细胞的募集和监视功能,导致肺部细菌清除能力的降低和致死率的增加[51]。当肺部迷走神经对细菌脂多糖的探测功能出现问题时可能会导致下丘脑室旁核无法正常响应,从而无法触发必要的急性应激反应来对抗全身性感染。这种情况下的功能失调,可能是导致感染性疾病迹象加剧的重要因素[88]。基于 TRPV1+ 感觉神经元在调节肺部免疫功能方面的作用,有研究提出,使用其激动剂对肺部神经纤维进行靶向治疗或可降低COVID-19患者的死亡率[89]

  • 交感神经支配在不同感染性疾病中可能具有不同作用。在肺部诺卡菌感染模型中,b2 肾上腺素能受体缺失会导致更强的 ILC2 反应[87]。此外,药理学抑制或手术切除局部交感神经支配可以促进由脂多糖诱导的肺部天然免疫反应,机制上可能是由于交感神经消融术增强了 IL-33 诱导的 2 型免疫反应[13]。研究发现,外周交感神经切除术通过减少炎症反应降低了甲型流感病毒引起的肺炎的小鼠发病率和死亡率[90]。新冠感染可导致交感神经过度激活,而 β 受体阻滞剂能够通过抑制核因子 κB (Nuclear Factor kappa-B,NF-κB) 信号通路减少促炎细胞因子的释放[91]。因此,交感神经支配可能会抑制抗细菌天然免疫但促进抗病毒免疫。

  • 副交感神经表达的主要神经递质ACh能够抑制内毒素引起的炎症细胞因子如TNF-a、IL-1 β、IL-6 和 IL-18 的产生,但不影响免疫抑制性细胞因子 IL-10[92-93],表明ACh在调节免疫反应中具有选择性的抑制作用。肺部的中性粒细胞和肺泡巨噬细胞表达的乙酰胆碱受体 α7nAChR 在调控炎症反应和细胞因子释放中也起着重要作用。在大肠杆菌致肺部感染模型中,这种受体的激活可能有助于保护小鼠在急性感染中免受死亡[94]。呼吸道合胞病毒感染会导致肺部神经生长因子 (Nerve Growth Factor,NGF) 和 BDNF 的上调,并间接导致过度气道激活,研究发现,白藜芦醇滴鼻或许能通过抑制气道乙酰胆碱反应降低 NGF 水平,从而抑制炎症[95]。除此之外,神经细胞并非是神经递质的唯一来源,研究发现,来自于上皮细胞分泌的神经生长因子 (Neurturin,NRTN) 可以作用于病毒感染的人肺部巨噬细胞,从而抑制促炎症细胞因子的释放[96]。这些研究结果增进了对神经免疫交互作用的理解,也为控制感染提供了可能的方向。

  • 4.3 肺癌

  • 神经系统作为肿瘤微环境的一部分,不仅在肿瘤的形成和发展中起着至关重要的作用,而且与免疫系统之间存在复杂的相互作用。在肺癌研究中,神经与肿瘤细胞之间的交互作用显示出其可能具有促进肿瘤进展的调控功能。多项研究表明,肾上腺素能受体 (Beta-2 Adrenergic Receptor,β2-AR) 表达与肺癌细胞增殖以及不良预后具有较强的相关性[97-99]。β2-AR 信号通过直接作用于肿瘤细胞和间接作用于肿瘤微环境中的基质细胞加速肿瘤生长[100]。儿茶酚胺可以作用于肿瘤相关免疫细胞上的肾上腺素能受体,触发血管内皮生长因子 (Vascular Endothelial Growth Factor,VEGF) 的产生和肿瘤血管生成[101]。血管内皮生长因子受体 2 (Vascular Endothelial Growth Factor Receptor 2, VEGFR2) 酪氨酸激酶抑制剂 (Tyrosine Kinase Inhibitors,TKIs) 在治疗 NSCLC 方面取得显著临床进展,但其会上调ADRB2在NSCLC细胞中的表达,而使用肾上腺素能受体2(Adrenoceptor Beta2, ADRB2) 拮抗剂能够显著增强 VEGFR2-TKIs 对 NSCLC 细胞的治疗效果[102]。除此之外,ACh 能够作为自分泌生长因子,通过激活丝裂原活化蛋白激酶 (Mitogen-Activated Protein Kinase,MAPK) 和蛋白激酶 B (Protein Kinase B,PKB) 信号通路,促进肺癌细胞的增殖、黏附、迁移和侵袭[103]。ACh 的增加还能够提高基质金属蛋白酶 9 (Matrix Metalloproteinase9,MMP9) 的表达,并下调细胞间黏附分子钙黏蛋白E的表达,这两种变化都与肺癌的迁移和侵袭行为密切相关[104]

  • 然而,迷走感觉神经对肺癌的作用呈现出不同的研究结果。在小细胞肺癌(Small Cell Lung Cancer, SCLC) 的研究中,肺部的迷走神经横断实验能够明显抑制肺癌的原发性形成、进展和转移。进一步的研究发现,SCLC细胞能够与囊泡膜谷氨酸转运体 1 (Vesicular Glutamate Transporter 1,VGLUT1) 阳性神经元形成功能性突触有助于肿瘤的生长,为阻断这种谷氨酸能信号传递提供了一种新的肺癌干预策略[105]。但流行病学研究发现,高迷走神经活动预示着更好的癌症预后[106]。这些相互矛盾的发现可能与所使用的肿瘤模型的侵袭性水平、神经失活的持续时间以及感觉神经活动的局部与全身效应不同有关,相关的作用机制有待进一步深入研究。

  • 4.4 慢性阻塞性肺病慢性阻塞性肺病

  • 慢性阻塞性肺病 (Chronic Obstructive Pulmoriary Disease,COPD) 是一组以肺部气流受限为特征的肺部疾病,伴有呼吸短促、咳嗽和支气管阻塞[107]。COPD患者表现出交感神经和副交感神经活动的减少[108]。而支气管肺迷走感觉神经元的异常活动可能在 COPD中发挥重要作用。感觉神经末梢释放的神经肽能够调节炎症的进展:SP 增加了中性粒细胞的黏附聚集和吞噬活性,VIP降低气道黏膜平滑肌收缩反应[109]。也有研究显示,辣椒素敏感的迷走神经传入神经参与了实验性自身免疫性脑脊髓炎肺水肿的发生[110]

  • 机制研究发现,气道炎症与损伤使下层的迷走神经末梢暴露于气道管腔,引起ACh的释放,进而导致毒蕈碱 1 受体 (Muscarinic Acetylcholine1 Receptor,M1R) 和M3R的激活,ACh通过M受体的促炎作用增强[111]。因此,使用抗胆碱能药物阻断收缩作用可能是一种有效的治疗干预措施。在暴露于香烟烟雾引起的慢性阻塞性肺病小鼠模型中,使用长效毒蕈碱拮抗剂噻托溴铵治疗可降低肺部炎症介质的水平[112]。在模拟严重COPD的大鼠阻力呼吸模型中,疾病诱导前使用噻托溴铵可减少炎症浸润与肺损伤[113]。除此之外,与健康人相比,COPD患者出现PNECs的过度激活与CGRP 释放增加[114],这也可能成为COPD的一个治疗靶点(见图3)。

  • 5 小结与展望

  • 肺在内的屏障组织与外界环境之间的交互密切,对健康的维持以及疾病的发生发展都发挥重要调控功能。肺的神经支配可迅速监测组织的损伤或危险物质,并参与招募免疫系统协调免疫应答过程。同时免疫细胞释放的大量细胞因子也能作用于神经元相关受体,使中枢系统能够感知外周炎症反应的变化。这些细胞网络建立了至关重要的神经免疫互作单元,成为维持屏障功能和宿主防御所必需的关键元素。在自身免疫疾病、炎症性疾病、癌症中,神经免疫的互作也可能起到了助推疾病发生的作用,这一互作网络的内在机制值得后续深入研究,可能为系统性地干预肺部疾病提供新的视角。

  • 图3 不同肺部疾病 (过敏性疾病、感染性疾病、肺癌、慢性阻塞性肺病) 中的神经免疫互作

  • Figure3 Neuro-immune interactions in different lung diseases (allergic diseases, infectious diseases, lung cancer, chronic obstructive pulmonary disease)

  • 最近的研究中,肺部的神经免疫互作已成为研究者们日益关注的方向。随着研究方法的不断革新,我们对于肺部神经免疫系统的理解已经取得了显著的进展。然而,这一领域的复杂性也带来了许多未解之谜和新的研究问题。首先,肺部的免疫反应在感染后是否表现为全身性或是组织特异性的应答,进而关联到神经免疫系统的功能。目前的研究多采用电刺激或神经截断的方法来探索神经元的参与,但这些方法无法完全模拟生理或病理条件下的实际情况。因此,需要更精细的技术解析在自然条件下活跃的神经元,以便更准确地理解神经免疫机制。此外,近年来将神经相关的研究成果应用于临床治疗也取得了一定的进展,如 TRP 亚家族中的 TRPV1及TRPA1阻滞剂等。这些治疗手段的开发,虽然在临床上显示出潜力,但其是否涉及神经免疫参与的机制仍不明确。同时,传统的治疗方法如针灸是否能够靶向肺部的神经系统并影响局部病理状态,也是一个值得进一步探索的问题。这不仅有助于我们理解传统医学的科学基础,也可能为开发新的治疗手段提供线索。

  • 综上所述,肺部的神经免疫互作研究在现阶段是一个充满挑战和机遇的领域。未来的研究需引入生物医学研究的多维技术手段,全方位解析神经免疫通路,以便为呼吸道相关疾病的治疗提供新型策略。

  • 参考文献

    • [1] TRAVAGLINI K J,NABHAN A N,PENLAND L,et al.A molecular cell atlas of the human lung from single-cell RNA sequencing[J].Nature,2020,587(7835):619-625.

    • [2] HO C Y,GU Q,LIN Y S,et al.Sensitivity of vagal afferent endings to chemical irritants in the rat lung[J].Respiration Physiology,2001,127(2-3):113-124.

    • [3] CANNING B J,FARMER D G,MORI N.Mechanistic studies of acid-evoked coughing in anesthetized guineapigs[J].American Journal of Physiology,2006,291(2):R454-R463.

    • [4] CATERINA M J,SCHUMACHER M A,TOMINAGA M,et al.The capsaicin receptor:A heat-activated ion channel in the pain pathway[J].Nature,1997,389(6653):816-824.

    • [5] BIN N R,PRESCOTT S L,HORIO N,et al.An airway-tobrain sensory pathway mediates influenza-induced sickness [J].Nature,2023,615(7953):660-667.

    • [6] TAMARI M,DEL BEL K L,VER HEUL A M,et al.Sensory neurons promote immune homeostasis in the lung [J].Cell,2024,187(1):44-61.e17.

    • [7] MAGGI C A.Tachykinins and calcitonin gene-related peptide(CGRP)as co-transmitters released from peripheral endings of sensory nerves[J].Progress in Neurobiology,1995,45(1):1-98.

    • [8] VOISIN T,BOUVIER A,CHIU I M.Neuro-immune interactions in allergic diseases:Novel targets for therapeutics[J].International Immunology,2017,29(6):247-261.

    • [9] KLEIN WOLTERINK R G J,WU G S,CHIU I M,et al.Neuroimmune interactions in peripheral organs[J].Annual Review of Neuroscience,2022,45:339-360.

    • [10] HUH J R,VEIGA-FERNANDES H.Neuroimmune circuits in inter-organ communication[J].Nature Reviews Immunology,2020,20(4):217-228.

    • [11] SCHILLER M,BEN-SHAANAN T L,ROLLS A.Neuronal regulation of immunity:Why,how and where?[J].Nature Reviews Immunology,2021,21(1):20-36.

    • [12] KORNFIELD J,DE LA TORRE U,MIZE E,et al.Illuminating airway nerve structure and function in chronic cough[J].Lung,2023,201(6):499-509.

    • [13] LIU T,YANG L,HAN X,et al.Local sympathetic innervations modulate the lung innate immune responses [J].Science Advances,2020,6(20):eaay1497.

    • [14] HAJIASGHARZADEH K,SADIGH-ETEGHAD S,MANSOORI B,et al.Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis:Friends or foes?[J].Journal of Cellular Physiology,2019,234(9):14666-14679.

    • [15] CREMIN M,SCHREIBER S,MURRAY K,et al.The diversity of neuroimmune circuits controlling lung inflammation[J].American Journal of Physiology,2023,324(1):L53-L63.

    • [16] MADISSOON E,OLIVER A J,KLESHCHEVNIKOV V,et al.A spatially resolved atlas of the human lung characterizes a gland-associated immune niche[J].Nature Genetics,2023,55(1):66-77.

    • [17] GOPALLAWA I,DEHINWAL R,BHATIA V,et al.A four-part guide to lung immunology:Invasion,inflammation,immunity,and intervention[J].Frontiers in Immunology,2023,14:1119564.

    • [18] ZAZARA D E,BELIOS I,LÜCKE J,et al.Tissue-resident immunity in the lung:A first-line defense at the environmental interface[J].Seminars in Immunopathology,2022,44(6):827-854.

    • [19] CHO S J,STOUT-DELGADO H W.Aging and lung disease[J].Annual Review of Physiology,2020,82:433-459.

    • [20] BISSONNETTE E Y,LAUZON-JOSET J F,DEBLEY J S,et al.Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis [J].Frontiers in Immunology,2020,11:583042.

    • [21] KOPF M,SCHNEIDER C,NOBS S P.The development and function of lung-resident macrophages and dendritic cells[J].Nature Immunology,2015,16(1):36-44.

    • [22] ZILTENER P,REINHECKEL T,OXENIUS A.Neutro‐ phil and alveolar macrophage-mediated innate immune control of legionella pneumophila lung infection via TNF and ROS[J].PLoS Pathogens,2016,12(4):e1005591.

    • [23] WANG T,ZHANG J,WANG Y,et al.Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs[J].Nature Immunology,2023,24(3):423-438.

    • [24] SCHYNS J,BAI Q,RUSCITTI C,et al.Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung[J].Nature Communications,2019,10(1):3964.

    • [25] URAL B B,YEUNG S T,DAMANI-YOKOTA P,et al.Identification of a nerve-associated,lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties[J].Science Immunology,2020,5(45):eaax8756.

    • [26] AKDIS C A,ARKWRIGHT P D,BRÜGGEN M C,et al.Type 2 immunity in the skin and lungs[J].Allergy,2020,75(7):1582-1605.

    • [27] TOJIMA I,MATSUMOTO K,KIKUOKA H,et al.Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis[J].Allergy,2019,74(12):2417-2426.

    • [28] HAMMAD H,LAMBRECHT B N.The basic immunology of asthma[J].Cell,2021,184(6):1469-1485.

    • [29] CAYROL C,GIRARD J P.Interleukin-33(IL-33):A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine[J].Cytokine,2022,156:155891.

    • [30] YIN Z,ZHOU Y,TURNQUIST H R,et al.Neuroepithelial-ILC2 crosstalk in barrier tissues[J].Trends in Immunology,2022,43(11):901-916.

    • [31] SNYDER M E,FARBER D L.Human lung tissue resident memory T cells in health and disease[J].Current Opinion in Immunology,2019,59:101-108.

    • [32] YUAN R,YU J,JIAO Z,et al.The roles of tissueresident memory T cells in lung diseases[J].Frontiers in Immunology,2021,12:710375.

    • [33] LUO W,HU J,XU W,et al.Distinct spatial and temporal roles for Th1,Th2 and Th17 cells in asthma[J].Frontiers in Immunology,2022,13:974066.

    • [34] KOLAHIAN S,FERNANDEZ I E,EICKELBERG O,et al.Immune mechanisms in pulmonary fibrosis[J].American Journal of Respiratory Cell and Molecular Biology,2016,55(3):309-322.

    • [35] THOMAS R,QIAO S,YANG X.Th17/Treg imbalance:Implications in lung inflammatory diseases[J].International Journal of Molecular Sciences,2023,24(5):4865.

    • [36] GUAN T,ZHOU X,ZHOU W,et al.Regulatory T cell and macrophage crosstalk in acute lung injury:Future perspectives[J].Cell Death Discovery,2023,9(1):9.

    • [37] SHENOY A T,LYON DE ANA C,ARAFA E I,et al.Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity[J].Nature Communications,2021,12(1):5834.

    • [38] BURGOYNE R A,FISHER A J,BORTHWICK L A.The role of epithelial damage in the pulmonary immune response[J].Cells,2021,10(10):2763.

    • [39] HEWITT R J,LLOYD C M.Regulation of immune responses by the airway epithelial cell landscape[J].Nature Reviews Immunology,2021,21(6):347-362.

    • [40] KUO C S,KRASNOW M A.Formation of a neurosensory organ by epithelial cell slithering[J].Cell,2015,163(2):394-405.

    • [41] XU J,YU H,SUN X.Less is more:Rare pulmonary neuroendocrine cells function as critical sensors in lung [J].Developmental Cell,2020,55(2):123-132.

    • [42] SUI P,WIESNER D L,XU J,et al.Pulmonary neuroendocrine cells amplify allergic asthma responses [J].Science,2018,360(6393):eaan8546.

    • [43] CHANG R B,STROCHLIC D E,WILLIAMS E K,et al.Vagal sensory neuron subtypes that differentially control breathing[J].Cell,2015,161(3):622-633.

    • [44] ADRIAENSEN D,TIMMERMANS J P,BROUNS I,et al.Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies:An anterograde tracing and confocal microscopy study in adult rats[J].Cell and Tissue Research,1998,293(3):395-405.

    • [45] GU X,KARP P H,BRODY S L,et al.Chemosensory functions for pulmonary neuroendocrine cells[J].American Journal of Respiratory Cell and Molecular Biology,2014,50(3):637-646.

    • [46] BROUNS I,OZTAY F,PINTELON I,et al.Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs[J].Histochemistry and Cell Biology,2009,131(1):55-74.

    • [47] SEEHOLZER L F,JULIUS D.Neuroendocrine cells initiate protective upper airway reflexes[J].Science,2024,384(6693):295-301.

    • [48] KUO C S,DARMANIS S,DIAZ DE ARCE A,et al.Neuroendocrinology of the lung revealed by single-cell RNA sequencing[J].eLife,2022,11:e78216.

    • [49] SHIREY K A,LAI W,SUNDAY M E,et al.Novel neuroendocrine role of γ-aminobutyric acid and gastrinreleasing peptide in the host response to influenza infection [J].Mucosal Immunology,2023,16(3):302-311.

    • [50] CACERES A I,BRACKMANN M,ELIA M D,et al.A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(22):9099-9104.

    • [51] BARAL P,UMANS B D,LI L,et al.Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J].Nature Medicine,2018,24(4):417-426.

    • [52] BARRIOS J,PATEL K R,AVEN L,et al.Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion[J].The FASEB Journal,2017,31(9):4117-4128.

    • [53] NADjSOMBATI M S,MCGINTY J W,LYONS-COHEN M R,et al.Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit[J].Immunity,2018,49(1):33-41.e7.

    • [54] BORNSTEIN C,NEVO S,GILADI A,et al.Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells[J].Nature,2018,559(7715):622-626.

    • [55] BEZENÇON C,FÜRHOLZ A,RAYMOND F,et al.Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells[J].The Journal of Comparative Neurology,2008,509(5):514-525.

    • [56] MONTORO D T,HABER A L,BITON M,et al.A revised airway epithelial hierarchy includes CFTR-expressing ionocytes[J].Nature,2018,560(7718):319-324.

    • [57] BANKOVA L G,DWYER D F,YOSHIMOTO E,et al.The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation[J].Science Immunology,2018,3(28):eaat9453.

    • [58] RANE C K,JACKSON S R,PASTORE C F,et al.Development of solitary chemosensory cells in the distallung after severe influenza injury[J].American Journal of Physiology,2019,316(6):L1141-L1149.

    • [59] BAINE M K,FEBRES-ALDANA C A,CHANG J C,et al.POU2F3 in SCLC:Clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC[J].Journal of Thoracic Oncology,2022,17(9):1109-1121.

    • [60] WU X S,HE X Y,IPSARO J J,et al.OCA-T1 and OCAT2 are coactivators of POU2F3 in the tuft cell lineage[J].Nature,2022,607(7917):169-175.

    • [61] YUAN F,GASSER G N,LEMIRE E,et al.Transgenic ferret models define pulmonary ionocyte diversity and function[J].Nature,2023,621(7980):857-867.

    • [62] HOLLENHORST M I,KRASTEVA-CHRIST G.Chemo‐ sensory cells in the respiratory tract as crucial regulators of innate immune responses[J].The Journal of Physiology,2023,601(9):1555-1572.

    • [63] KNOOP K A,NEWBERRY R D.Goblet cells:Multifaceted players in immunity at mucosal surfaces[J].Mucosal Immunology,2018,11(6):1551-1557.

    • [64] VIEIRA BRAGA F A,KAR G,BERG M,et al.A cellular census of human lungs identifies novel cell states in health and in asthma[J].Nature Medicine,2019,25(7):1153-1163.

    • [65] CARRER M,CROSBY J R,SUN G,et al.Antisense oligonucleotides targeting jagged 1 reduce house dust mite-induced goblet cell metaplasia in the adult murine lung[J].American Journal of Respiratory Cell and Molecular Biology,2020,63(1):46-56.

    • [66] HICKS-BERTHET J,NING B,FEDERICO A,et al.Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis[J].Cell Reports,2021,36(2):109347.

    • [67] KIM H T,YIN W,NAKAMICHI Y,et al.WNT/RYK signaling restricts goblet cell differentiation during lung development and repair[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25697-25706.

    • [68] OSAN J,TALUKDAR S N,FELDMANN F,et al.Goblet cell hyperplasia increases SARS-CoV-2 infection in chronic obstructive pulmonary disease[J].Microbiology Spectrum,2022,10(4):e0045922.

    • [69] DE VIRGILIIS F,DI GIOVANNI S.Lung innervation in the eye of a cytokine storm:Neuroimmune interactions and COVID-19[J].Nature Reviews Neurology,2020,16(11):645-652.

    • [70] REN W,CHEN J,WANG W,et al.Sympathetic nerveenteroendocrine L cell communication modulates GLP-1 release,brain glucose utilization,and cognitive function [J].Neuron,2024,112(6):972-990.e8.

    • [71] REN W,HUA M,CAO F,et al.The sympathetic-immune milieu in metabolic health and diseases:Insights from pancreas,liver,intestine,and adipose tissues[J].Advanced Science,2024,11(8):e2306128.

    • [72] TRÄNKNER D,HAHNE N,SUGINO K,et al.Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(31):11515-11520.

    • [73] TALBOT S,ABDULNOUR R E E,BURKETT P R,et al.Silencing nociceptor neurons reduces allergic airway inflammation[J].Neuron,2015,87(2):341-354.

    • [74] WALLRAPP A,RIESENFELD S J,BURKETT P R,et al.The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation[J].Nature,2017,549(7672):351-356.

    • [75] LU Y,HUANG Y,LI J,et al.Eosinophil extracellular traps drive asthma progression through neuro-immune signals[J].Nature Cell Biology,2021,23(10):1060-1072.

    • [76] LE D D,SCHMIT D,HECK S,et al.Increase of mast cell-nerve association and neuropeptide receptor expression on mast cells in perennial allergic rhinitis[J].Neuro‐ immunomodulation,2016,23(5-6):261-270.

    • [77] CYPHERT J M,KOVAROVA M,ALLEN I C,et al.Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction[J].Journal of Immunology,2009,182(12):7430-7439.

    • [78] ROVIEZZO F,SORRENTINO R,BERTOLINO A,et al.S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo:molecular and cellular mechanisms[J].British Journal of Pharmacology,2015,172(7):1882-1893.

    • [79] LI J N,LI X L,HE J,et al.Sex-and afferent-specific differences in histamine receptor expression in vagal afferents of rats:A potential mechanism for sexual dimorphism in prevalence and severity of asthma[J].Neuroscience,2015,303:166-177.

    • [80] LI D,WU J,XIONG X.The role of the acetylcholine system in common respiratory diseases and COVID-19 [J].Molecules,2023,28(3):1139.

    • [81] KUMMER W,LIPS K S,PFEIL U.The epithelial cholinergic system of the airways[J].Histochemistry and Cell Biology,2008,130(2):219-234.

    • [82] DRAKE M G,LEBOLD K M,ROTH-CARTER Q R,et al.Eosinophil and airway nerve interactions in asthma[J].Journal of Leukocyte Biology,2018,104(1):61-67.

    • [83] SATO E,KOYAMA S,OKUBO Y,et al.Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity[J].The American Journal of Physiology,1998,274(6):L970-L979.

    • [84] DRAGUNAS G,WOEST M E,NIJBOER S,et al.Cholinergic neuroplasticity in asthma driven by TrkB signaling[J].The FASEB Journal,2020,34(6):7703-7717.

    • [85] GALLE-TREGER L,SUZUKI Y,PATEL N,et al.Nicotinic acetylcholine receptor agonist attenuates ILC2-de‐ pendent airway hyperreactivity[J].Nature Communications,2016,7:13202.

    • [86] PELAIA C,CRIMI C,CRIMI N,et al.Indacaterol/glycopyrronium/mometasone fixed dose combination for uncontrolled asthma[J].Expert Review of Respiratory Medicine,2022,16(2):183-195.

    • [87] MORIYAMA S,BRESTOFF J R,FLAMAR A L,et al.β 2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses[J].Science,2018,359(6379):1056-1061.

    • [88] GRANTON E,BROWN L,DEFAYE M,et al.Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection[J].Cell,2024,187(8):1874-1888.e14.

    • [89] NAHAMA A,RAMACHANDRAN R,CISTERNAS A F,et al.The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis:A review[J].Medicine in Drug Discovery,2020,5:100033.

    • [90] GREBE K M,TAKEDA K,HICKMAN H D,et al.Cutting edge:Sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis[J].Journal of Immunology,2010,184(2):540-544.

    • [91] AL-KURAISHY H M,AL-GAREEB A I,MOSTAFAHEDEAB G,et al.Effects of β-Blockers on the sympathetic and cytokines storms in COVID-19[J].Frontiers in Immunology,2021,12:749291.

    • [92] BOROVIKOVA L V,IVANOVA S,ZHANG M,et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J].Nature,2000,405(6785):458-462.

    • [93] WANG H,YU M,OCHANI M,et al.Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation[J].Nature,2003,421(6921):384-388.

    • [94] SU X,MATTHAY M A,MALIK A B.Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury[J].Journal of Immunology,2010,184(1):401-410.

    • [95] ZANG N,LI S,LI W,et al.Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice[J].International Immunopharmacology,2015,28(1):121-128.

    • [96] CONNOLLY E,MORGAN D J,FRANKLIN M,et al.Neurturin regulates the lung-resident macrophage inflammatory response to viral infection[J].Life Science Alliance,2020,3(12):e202000780.

    • [97] JI L,XU F,ZHANG J,et al.ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma[J].Scientific Reports,2022,12(1):15994.

    • [98] KAIRA K,KAMIYOSHIHARA M,KAWASHIMA O,et al.Prognostic impact of β2 adrenergic receptor expression in surgically resected pulmonary pleomorphic carcinoma[J].Anticancer Research,2019,39(1):395-403.

    • [99] YAZAWA T,KAIRA K,SHIMIZU K,et al.Prognostic significance of β2-adrenergic receptor expression in nonsmall cell lung cancer[J].American Journal of Translational Research,2016,8(11):5059-5070.

    • [100] NILSSON M B,LE X,HEYMACH J V.β-adrenergic signaling in lung cancer:A potential role for beta-blockers [J].Journal of Neuroimmune Pharmacology,2020,15(1):27-36.

    • [101] XIA Y,WEI Y,LI Z Y,et al.Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages[J].Brain,Behavior and Immunity,2019,81:111-121.

    • [102] XU Y,WANG J,WANG X,et al.Targeting ADRB2 enhances sensitivity of non-small cell lung cancer to VEGFR2 tyrosine kinase inhibitors[J].Cell Death Discovery,2022,8(1):36.

    • [103] SONG P,SEKHON H S,JIA Y,et al.Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma[J].Cancer Research,2003,63(1):214-221.

    • [104] LIN G,SUN L,WANG R,et al.Overexpression of muscarinic receptor 3 promotes metastasis and predicts poor prognosis in non-small-cell lung cancer[J].Journal of Thoracic Oncology,2014,9(2):170-178.

    • [105] SCHMITT A,SAKTHIVELU V,NDOCI K,et al.(2023).Functional synapses between small cell lung cancer and glutamatergic neurons.bioRxiv.https://doi.org/10.1101/2023.01.19.524045.

    • [106] DE COUCK M,CAERS R,SPIEGEL D,et al.The role of the vagus nerve in cancer prognosis:A systematic and a comprehensive review[J].Journal of Oncology,2018,2018:1236787.

    • [107] CHRISTENSON S A,SMITH B M,BAFADHEL M,et al.Chronic obstructive pulmonary disease[J].Lancet,2022,399(10342):2227-2242.

    • [108] VANZELLA L M,BERNARDO A F B,CARVALHO T D DE,et al.Complexity of autonomic nervous system function in individuals with COPD[J].Jornal Brasileiro De Pneumologia,2018,44(1):24-30.

    • [109] CAMP B,STEGEMANN-KONISZEWSKI S,SCHREIBER J.Infection-aassociated mechanisms of neuro-inflammation and neuro-immune crosstalk in chronic respiratory diseases [J].International Journal of Molecular Sciences,2021,22(11):5699.

    • [110] URAKOVA M A,BRYNDINA I G.Water balance of lung and nitrogen oxide in blood at experimental autoim‐ mune encephalomyelitis after capsaicin blockade of vagus nerve[J].Patol Fiziol Eksp Ter,2016,60(3):18-22.

    • [111] KOLAHIAN S,GOSENS R.Cholinergic regulation of airway inflammation and remodelling[J].Journal of Allergy,2012,2012:681258.

    • [112] WOLLIN L,PIEPER M P.Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD[J].Pulmonary Pharmacology & Therapeutics,2010,23(4):345-354.

    • [113] TOUMPANAKIS D,LOVERDOS K,TZOUDA V,et al.Tiotropium bromide exerts anti-inflammatory effects during resistive breathing,an experimental model of severe airway obstruction[J].International Journal of Chronic Obstructive,2017,12:2207-2220.

    • [114] NOGUCHI M,FURUKAWA K T,MORIMOTO M.Pulmonary neuroendocrine cells:Physiology,tissue homeostasis and disease[J].Disease Models & Mechanisms,2020,13(12):dmm046920.

  • 参考文献

    • [1] TRAVAGLINI K J,NABHAN A N,PENLAND L,et al.A molecular cell atlas of the human lung from single-cell RNA sequencing[J].Nature,2020,587(7835):619-625.

    • [2] HO C Y,GU Q,LIN Y S,et al.Sensitivity of vagal afferent endings to chemical irritants in the rat lung[J].Respiration Physiology,2001,127(2-3):113-124.

    • [3] CANNING B J,FARMER D G,MORI N.Mechanistic studies of acid-evoked coughing in anesthetized guineapigs[J].American Journal of Physiology,2006,291(2):R454-R463.

    • [4] CATERINA M J,SCHUMACHER M A,TOMINAGA M,et al.The capsaicin receptor:A heat-activated ion channel in the pain pathway[J].Nature,1997,389(6653):816-824.

    • [5] BIN N R,PRESCOTT S L,HORIO N,et al.An airway-tobrain sensory pathway mediates influenza-induced sickness [J].Nature,2023,615(7953):660-667.

    • [6] TAMARI M,DEL BEL K L,VER HEUL A M,et al.Sensory neurons promote immune homeostasis in the lung [J].Cell,2024,187(1):44-61.e17.

    • [7] MAGGI C A.Tachykinins and calcitonin gene-related peptide(CGRP)as co-transmitters released from peripheral endings of sensory nerves[J].Progress in Neurobiology,1995,45(1):1-98.

    • [8] VOISIN T,BOUVIER A,CHIU I M.Neuro-immune interactions in allergic diseases:Novel targets for therapeutics[J].International Immunology,2017,29(6):247-261.

    • [9] KLEIN WOLTERINK R G J,WU G S,CHIU I M,et al.Neuroimmune interactions in peripheral organs[J].Annual Review of Neuroscience,2022,45:339-360.

    • [10] HUH J R,VEIGA-FERNANDES H.Neuroimmune circuits in inter-organ communication[J].Nature Reviews Immunology,2020,20(4):217-228.

    • [11] SCHILLER M,BEN-SHAANAN T L,ROLLS A.Neuronal regulation of immunity:Why,how and where?[J].Nature Reviews Immunology,2021,21(1):20-36.

    • [12] KORNFIELD J,DE LA TORRE U,MIZE E,et al.Illuminating airway nerve structure and function in chronic cough[J].Lung,2023,201(6):499-509.

    • [13] LIU T,YANG L,HAN X,et al.Local sympathetic innervations modulate the lung innate immune responses [J].Science Advances,2020,6(20):eaay1497.

    • [14] HAJIASGHARZADEH K,SADIGH-ETEGHAD S,MANSOORI B,et al.Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis:Friends or foes?[J].Journal of Cellular Physiology,2019,234(9):14666-14679.

    • [15] CREMIN M,SCHREIBER S,MURRAY K,et al.The diversity of neuroimmune circuits controlling lung inflammation[J].American Journal of Physiology,2023,324(1):L53-L63.

    • [16] MADISSOON E,OLIVER A J,KLESHCHEVNIKOV V,et al.A spatially resolved atlas of the human lung characterizes a gland-associated immune niche[J].Nature Genetics,2023,55(1):66-77.

    • [17] GOPALLAWA I,DEHINWAL R,BHATIA V,et al.A four-part guide to lung immunology:Invasion,inflammation,immunity,and intervention[J].Frontiers in Immunology,2023,14:1119564.

    • [18] ZAZARA D E,BELIOS I,LÜCKE J,et al.Tissue-resident immunity in the lung:A first-line defense at the environmental interface[J].Seminars in Immunopathology,2022,44(6):827-854.

    • [19] CHO S J,STOUT-DELGADO H W.Aging and lung disease[J].Annual Review of Physiology,2020,82:433-459.

    • [20] BISSONNETTE E Y,LAUZON-JOSET J F,DEBLEY J S,et al.Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis [J].Frontiers in Immunology,2020,11:583042.

    • [21] KOPF M,SCHNEIDER C,NOBS S P.The development and function of lung-resident macrophages and dendritic cells[J].Nature Immunology,2015,16(1):36-44.

    • [22] ZILTENER P,REINHECKEL T,OXENIUS A.Neutro‐ phil and alveolar macrophage-mediated innate immune control of legionella pneumophila lung infection via TNF and ROS[J].PLoS Pathogens,2016,12(4):e1005591.

    • [23] WANG T,ZHANG J,WANG Y,et al.Influenza-trained mucosal-resident alveolar macrophages confer long-term antitumor immunity in the lungs[J].Nature Immunology,2023,24(3):423-438.

    • [24] SCHYNS J,BAI Q,RUSCITTI C,et al.Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung[J].Nature Communications,2019,10(1):3964.

    • [25] URAL B B,YEUNG S T,DAMANI-YOKOTA P,et al.Identification of a nerve-associated,lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties[J].Science Immunology,2020,5(45):eaax8756.

    • [26] AKDIS C A,ARKWRIGHT P D,BRÜGGEN M C,et al.Type 2 immunity in the skin and lungs[J].Allergy,2020,75(7):1582-1605.

    • [27] TOJIMA I,MATSUMOTO K,KIKUOKA H,et al.Evidence for the induction of Th2 inflammation by group 2 innate lymphoid cells in response to prostaglandin D2 and cysteinyl leukotrienes in allergic rhinitis[J].Allergy,2019,74(12):2417-2426.

    • [28] HAMMAD H,LAMBRECHT B N.The basic immunology of asthma[J].Cell,2021,184(6):1469-1485.

    • [29] CAYROL C,GIRARD J P.Interleukin-33(IL-33):A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine[J].Cytokine,2022,156:155891.

    • [30] YIN Z,ZHOU Y,TURNQUIST H R,et al.Neuroepithelial-ILC2 crosstalk in barrier tissues[J].Trends in Immunology,2022,43(11):901-916.

    • [31] SNYDER M E,FARBER D L.Human lung tissue resident memory T cells in health and disease[J].Current Opinion in Immunology,2019,59:101-108.

    • [32] YUAN R,YU J,JIAO Z,et al.The roles of tissueresident memory T cells in lung diseases[J].Frontiers in Immunology,2021,12:710375.

    • [33] LUO W,HU J,XU W,et al.Distinct spatial and temporal roles for Th1,Th2 and Th17 cells in asthma[J].Frontiers in Immunology,2022,13:974066.

    • [34] KOLAHIAN S,FERNANDEZ I E,EICKELBERG O,et al.Immune mechanisms in pulmonary fibrosis[J].American Journal of Respiratory Cell and Molecular Biology,2016,55(3):309-322.

    • [35] THOMAS R,QIAO S,YANG X.Th17/Treg imbalance:Implications in lung inflammatory diseases[J].International Journal of Molecular Sciences,2023,24(5):4865.

    • [36] GUAN T,ZHOU X,ZHOU W,et al.Regulatory T cell and macrophage crosstalk in acute lung injury:Future perspectives[J].Cell Death Discovery,2023,9(1):9.

    • [37] SHENOY A T,LYON DE ANA C,ARAFA E I,et al.Antigen presentation by lung epithelial cells directs CD4+ TRM cell function and regulates barrier immunity[J].Nature Communications,2021,12(1):5834.

    • [38] BURGOYNE R A,FISHER A J,BORTHWICK L A.The role of epithelial damage in the pulmonary immune response[J].Cells,2021,10(10):2763.

    • [39] HEWITT R J,LLOYD C M.Regulation of immune responses by the airway epithelial cell landscape[J].Nature Reviews Immunology,2021,21(6):347-362.

    • [40] KUO C S,KRASNOW M A.Formation of a neurosensory organ by epithelial cell slithering[J].Cell,2015,163(2):394-405.

    • [41] XU J,YU H,SUN X.Less is more:Rare pulmonary neuroendocrine cells function as critical sensors in lung [J].Developmental Cell,2020,55(2):123-132.

    • [42] SUI P,WIESNER D L,XU J,et al.Pulmonary neuroendocrine cells amplify allergic asthma responses [J].Science,2018,360(6393):eaan8546.

    • [43] CHANG R B,STROCHLIC D E,WILLIAMS E K,et al.Vagal sensory neuron subtypes that differentially control breathing[J].Cell,2015,161(3):622-633.

    • [44] ADRIAENSEN D,TIMMERMANS J P,BROUNS I,et al.Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies:An anterograde tracing and confocal microscopy study in adult rats[J].Cell and Tissue Research,1998,293(3):395-405.

    • [45] GU X,KARP P H,BRODY S L,et al.Chemosensory functions for pulmonary neuroendocrine cells[J].American Journal of Respiratory Cell and Molecular Biology,2014,50(3):637-646.

    • [46] BROUNS I,OZTAY F,PINTELON I,et al.Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs[J].Histochemistry and Cell Biology,2009,131(1):55-74.

    • [47] SEEHOLZER L F,JULIUS D.Neuroendocrine cells initiate protective upper airway reflexes[J].Science,2024,384(6693):295-301.

    • [48] KUO C S,DARMANIS S,DIAZ DE ARCE A,et al.Neuroendocrinology of the lung revealed by single-cell RNA sequencing[J].eLife,2022,11:e78216.

    • [49] SHIREY K A,LAI W,SUNDAY M E,et al.Novel neuroendocrine role of γ-aminobutyric acid and gastrinreleasing peptide in the host response to influenza infection [J].Mucosal Immunology,2023,16(3):302-311.

    • [50] CACERES A I,BRACKMANN M,ELIA M D,et al.A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(22):9099-9104.

    • [51] BARAL P,UMANS B D,LI L,et al.Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J].Nature Medicine,2018,24(4):417-426.

    • [52] BARRIOS J,PATEL K R,AVEN L,et al.Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion[J].The FASEB Journal,2017,31(9):4117-4128.

    • [53] NADjSOMBATI M S,MCGINTY J W,LYONS-COHEN M R,et al.Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit[J].Immunity,2018,49(1):33-41.e7.

    • [54] BORNSTEIN C,NEVO S,GILADI A,et al.Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells[J].Nature,2018,559(7715):622-626.

    • [55] BEZENÇON C,FÜRHOLZ A,RAYMOND F,et al.Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells[J].The Journal of Comparative Neurology,2008,509(5):514-525.

    • [56] MONTORO D T,HABER A L,BITON M,et al.A revised airway epithelial hierarchy includes CFTR-expressing ionocytes[J].Nature,2018,560(7718):319-324.

    • [57] BANKOVA L G,DWYER D F,YOSHIMOTO E,et al.The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation[J].Science Immunology,2018,3(28):eaat9453.

    • [58] RANE C K,JACKSON S R,PASTORE C F,et al.Development of solitary chemosensory cells in the distallung after severe influenza injury[J].American Journal of Physiology,2019,316(6):L1141-L1149.

    • [59] BAINE M K,FEBRES-ALDANA C A,CHANG J C,et al.POU2F3 in SCLC:Clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC[J].Journal of Thoracic Oncology,2022,17(9):1109-1121.

    • [60] WU X S,HE X Y,IPSARO J J,et al.OCA-T1 and OCAT2 are coactivators of POU2F3 in the tuft cell lineage[J].Nature,2022,607(7917):169-175.

    • [61] YUAN F,GASSER G N,LEMIRE E,et al.Transgenic ferret models define pulmonary ionocyte diversity and function[J].Nature,2023,621(7980):857-867.

    • [62] HOLLENHORST M I,KRASTEVA-CHRIST G.Chemo‐ sensory cells in the respiratory tract as crucial regulators of innate immune responses[J].The Journal of Physiology,2023,601(9):1555-1572.

    • [63] KNOOP K A,NEWBERRY R D.Goblet cells:Multifaceted players in immunity at mucosal surfaces[J].Mucosal Immunology,2018,11(6):1551-1557.

    • [64] VIEIRA BRAGA F A,KAR G,BERG M,et al.A cellular census of human lungs identifies novel cell states in health and in asthma[J].Nature Medicine,2019,25(7):1153-1163.

    • [65] CARRER M,CROSBY J R,SUN G,et al.Antisense oligonucleotides targeting jagged 1 reduce house dust mite-induced goblet cell metaplasia in the adult murine lung[J].American Journal of Respiratory Cell and Molecular Biology,2020,63(1):46-56.

    • [66] HICKS-BERTHET J,NING B,FEDERICO A,et al.Yap/Taz inhibit goblet cell fate to maintain lung epithelial homeostasis[J].Cell Reports,2021,36(2):109347.

    • [67] KIM H T,YIN W,NAKAMICHI Y,et al.WNT/RYK signaling restricts goblet cell differentiation during lung development and repair[J].Proceedings of the National Academy of Sciences of the United States of America,2019,116(51):25697-25706.

    • [68] OSAN J,TALUKDAR S N,FELDMANN F,et al.Goblet cell hyperplasia increases SARS-CoV-2 infection in chronic obstructive pulmonary disease[J].Microbiology Spectrum,2022,10(4):e0045922.

    • [69] DE VIRGILIIS F,DI GIOVANNI S.Lung innervation in the eye of a cytokine storm:Neuroimmune interactions and COVID-19[J].Nature Reviews Neurology,2020,16(11):645-652.

    • [70] REN W,CHEN J,WANG W,et al.Sympathetic nerveenteroendocrine L cell communication modulates GLP-1 release,brain glucose utilization,and cognitive function [J].Neuron,2024,112(6):972-990.e8.

    • [71] REN W,HUA M,CAO F,et al.The sympathetic-immune milieu in metabolic health and diseases:Insights from pancreas,liver,intestine,and adipose tissues[J].Advanced Science,2024,11(8):e2306128.

    • [72] TRÄNKNER D,HAHNE N,SUGINO K,et al.Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(31):11515-11520.

    • [73] TALBOT S,ABDULNOUR R E E,BURKETT P R,et al.Silencing nociceptor neurons reduces allergic airway inflammation[J].Neuron,2015,87(2):341-354.

    • [74] WALLRAPP A,RIESENFELD S J,BURKETT P R,et al.The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation[J].Nature,2017,549(7672):351-356.

    • [75] LU Y,HUANG Y,LI J,et al.Eosinophil extracellular traps drive asthma progression through neuro-immune signals[J].Nature Cell Biology,2021,23(10):1060-1072.

    • [76] LE D D,SCHMIT D,HECK S,et al.Increase of mast cell-nerve association and neuropeptide receptor expression on mast cells in perennial allergic rhinitis[J].Neuro‐ immunomodulation,2016,23(5-6):261-270.

    • [77] CYPHERT J M,KOVAROVA M,ALLEN I C,et al.Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction[J].Journal of Immunology,2009,182(12):7430-7439.

    • [78] ROVIEZZO F,SORRENTINO R,BERTOLINO A,et al.S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo:molecular and cellular mechanisms[J].British Journal of Pharmacology,2015,172(7):1882-1893.

    • [79] LI J N,LI X L,HE J,et al.Sex-and afferent-specific differences in histamine receptor expression in vagal afferents of rats:A potential mechanism for sexual dimorphism in prevalence and severity of asthma[J].Neuroscience,2015,303:166-177.

    • [80] LI D,WU J,XIONG X.The role of the acetylcholine system in common respiratory diseases and COVID-19 [J].Molecules,2023,28(3):1139.

    • [81] KUMMER W,LIPS K S,PFEIL U.The epithelial cholinergic system of the airways[J].Histochemistry and Cell Biology,2008,130(2):219-234.

    • [82] DRAKE M G,LEBOLD K M,ROTH-CARTER Q R,et al.Eosinophil and airway nerve interactions in asthma[J].Journal of Leukocyte Biology,2018,104(1):61-67.

    • [83] SATO E,KOYAMA S,OKUBO Y,et al.Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity[J].The American Journal of Physiology,1998,274(6):L970-L979.

    • [84] DRAGUNAS G,WOEST M E,NIJBOER S,et al.Cholinergic neuroplasticity in asthma driven by TrkB signaling[J].The FASEB Journal,2020,34(6):7703-7717.

    • [85] GALLE-TREGER L,SUZUKI Y,PATEL N,et al.Nicotinic acetylcholine receptor agonist attenuates ILC2-de‐ pendent airway hyperreactivity[J].Nature Communications,2016,7:13202.

    • [86] PELAIA C,CRIMI C,CRIMI N,et al.Indacaterol/glycopyrronium/mometasone fixed dose combination for uncontrolled asthma[J].Expert Review of Respiratory Medicine,2022,16(2):183-195.

    • [87] MORIYAMA S,BRESTOFF J R,FLAMAR A L,et al.β 2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses[J].Science,2018,359(6379):1056-1061.

    • [88] GRANTON E,BROWN L,DEFAYE M,et al.Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection[J].Cell,2024,187(8):1874-1888.e14.

    • [89] NAHAMA A,RAMACHANDRAN R,CISTERNAS A F,et al.The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis:A review[J].Medicine in Drug Discovery,2020,5:100033.

    • [90] GREBE K M,TAKEDA K,HICKMAN H D,et al.Cutting edge:Sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis[J].Journal of Immunology,2010,184(2):540-544.

    • [91] AL-KURAISHY H M,AL-GAREEB A I,MOSTAFAHEDEAB G,et al.Effects of β-Blockers on the sympathetic and cytokines storms in COVID-19[J].Frontiers in Immunology,2021,12:749291.

    • [92] BOROVIKOVA L V,IVANOVA S,ZHANG M,et al.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J].Nature,2000,405(6785):458-462.

    • [93] WANG H,YU M,OCHANI M,et al.Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation[J].Nature,2003,421(6921):384-388.

    • [94] SU X,MATTHAY M A,MALIK A B.Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury[J].Journal of Immunology,2010,184(1):401-410.

    • [95] ZANG N,LI S,LI W,et al.Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice[J].International Immunopharmacology,2015,28(1):121-128.

    • [96] CONNOLLY E,MORGAN D J,FRANKLIN M,et al.Neurturin regulates the lung-resident macrophage inflammatory response to viral infection[J].Life Science Alliance,2020,3(12):e202000780.

    • [97] JI L,XU F,ZHANG J,et al.ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma[J].Scientific Reports,2022,12(1):15994.

    • [98] KAIRA K,KAMIYOSHIHARA M,KAWASHIMA O,et al.Prognostic impact of β2 adrenergic receptor expression in surgically resected pulmonary pleomorphic carcinoma[J].Anticancer Research,2019,39(1):395-403.

    • [99] YAZAWA T,KAIRA K,SHIMIZU K,et al.Prognostic significance of β2-adrenergic receptor expression in nonsmall cell lung cancer[J].American Journal of Translational Research,2016,8(11):5059-5070.

    • [100] NILSSON M B,LE X,HEYMACH J V.β-adrenergic signaling in lung cancer:A potential role for beta-blockers [J].Journal of Neuroimmune Pharmacology,2020,15(1):27-36.

    • [101] XIA Y,WEI Y,LI Z Y,et al.Catecholamines contribute to the neovascularization of lung cancer via tumor-associated macrophages[J].Brain,Behavior and Immunity,2019,81:111-121.

    • [102] XU Y,WANG J,WANG X,et al.Targeting ADRB2 enhances sensitivity of non-small cell lung cancer to VEGFR2 tyrosine kinase inhibitors[J].Cell Death Discovery,2022,8(1):36.

    • [103] SONG P,SEKHON H S,JIA Y,et al.Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma[J].Cancer Research,2003,63(1):214-221.

    • [104] LIN G,SUN L,WANG R,et al.Overexpression of muscarinic receptor 3 promotes metastasis and predicts poor prognosis in non-small-cell lung cancer[J].Journal of Thoracic Oncology,2014,9(2):170-178.

    • [105] SCHMITT A,SAKTHIVELU V,NDOCI K,et al.(2023).Functional synapses between small cell lung cancer and glutamatergic neurons.bioRxiv.https://doi.org/10.1101/2023.01.19.524045.

    • [106] DE COUCK M,CAERS R,SPIEGEL D,et al.The role of the vagus nerve in cancer prognosis:A systematic and a comprehensive review[J].Journal of Oncology,2018,2018:1236787.

    • [107] CHRISTENSON S A,SMITH B M,BAFADHEL M,et al.Chronic obstructive pulmonary disease[J].Lancet,2022,399(10342):2227-2242.

    • [108] VANZELLA L M,BERNARDO A F B,CARVALHO T D DE,et al.Complexity of autonomic nervous system function in individuals with COPD[J].Jornal Brasileiro De Pneumologia,2018,44(1):24-30.

    • [109] CAMP B,STEGEMANN-KONISZEWSKI S,SCHREIBER J.Infection-aassociated mechanisms of neuro-inflammation and neuro-immune crosstalk in chronic respiratory diseases [J].International Journal of Molecular Sciences,2021,22(11):5699.

    • [110] URAKOVA M A,BRYNDINA I G.Water balance of lung and nitrogen oxide in blood at experimental autoim‐ mune encephalomyelitis after capsaicin blockade of vagus nerve[J].Patol Fiziol Eksp Ter,2016,60(3):18-22.

    • [111] KOLAHIAN S,GOSENS R.Cholinergic regulation of airway inflammation and remodelling[J].Journal of Allergy,2012,2012:681258.

    • [112] WOLLIN L,PIEPER M P.Tiotropium bromide exerts anti-inflammatory activity in a cigarette smoke mouse model of COPD[J].Pulmonary Pharmacology & Therapeutics,2010,23(4):345-354.

    • [113] TOUMPANAKIS D,LOVERDOS K,TZOUDA V,et al.Tiotropium bromide exerts anti-inflammatory effects during resistive breathing,an experimental model of severe airway obstruction[J].International Journal of Chronic Obstructive,2017,12:2207-2220.

    • [114] NOGUCHI M,FURUKAWA K T,MORIMOTO M.Pulmonary neuroendocrine cells:Physiology,tissue homeostasis and disease[J].Disease Models & Mechanisms,2020,13(12):dmm046920.

  • 关闭