-
结核病是由结核分枝杆菌 (Mycobacterium tuberculosis,Mtb) 引起的慢性传染性疾病,目前仍然是导致全世界人类死亡的重大传染性疾病之一。世界卫生组织 2023 年发布的全球结核病报告显示[1],2022年,全球结核病患者约为 1 060万人,高于 2021 年的 1 030 万人和 2020 年的 1 000 万人; 全球有130万人死于结核病,造成的死亡总数几乎是艾滋病的2倍。更为严峻的挑战是,全球约四分之一人口是结核潜伏感染 (Latent Tuberculosis Infection,LTBI) 者[2],其中 5%~10%可能发展为活动性结核病,成为新的传染源,感染更多人群。 Mtb感染通常会触发宿主先天和适应性免疫反应从而限制细菌生长[3];然而,Mtb 通过进化产生包括细胞壁成分和分泌蛋白在内的毒力因子对抗宿主免疫细胞的杀伤策略,实现有效存活及感染发病[4]。了解Mtb与宿主免疫系统之间的互作机制,对于有效控制LTBI,预防更多的人感染Mtb,扭转整个结核病疫情具有重要意义。
-
Mtb主要通过呼吸道感染宿主肺,引发持续性炎症反应,破坏正常肺组织,进一步定植后导致肺部病变。感染后宿主主要形成了一种包含中央坏死区域和周围淋巴细胞层的保护性细胞结构,以控制 Mtb 传播[5]。这种由各种免疫细胞聚集形成的肉芽肿是Mtb感染形成的一种特征性病理结构。而肉芽肿在结核病发生发展过程中到底扮演什么角色,仍是众多结核病学家试图阐明的关键科学问题[6-8]。感染初期,经呼吸道进入宿主的Mtb被肺泡上皮巨噬细胞吞噬,肺泡巨噬细胞释放多种细胞因子来募集更多巨噬细胞、树突状细胞和淋巴细胞,导致早期肉芽肿的形成[9]。这一事件触发了包括中性粒细胞在内的各种免疫细胞的募集,其中中性粒细胞可以产生趋化因子和细胞因子应对感染,同时吸引更多免疫细胞至感染部位[9-10]。受感染的巨噬细胞作为肉芽肿的大部分细胞群,在其形成过程中发挥重要作用。巨噬细胞会形成肉芽肿的内核,充当其他细胞聚团形成典型球状结构的中央支架[9-10]。随着感染的进展,成熟的巨噬细胞会发生上皮样变,紧密地相互交叉连接,也可以融合在一起形成多核巨细胞 (也称为 Langhans巨细胞),或分化为细胞质中脂质大量积累的泡沫样巨噬细胞[6,9-12]。在肉芽肿中,Mtb 主要存在于各种巨噬细胞胞内[6-7]。这些细胞将 Mtb 的抗原呈递给 T 细胞,以分泌各种细胞因子和趋化因子,更多免疫细胞被招募到感染部位,通过 IFN-γ 介导的活性氧 (Reactive OxygenSpecies,ROS) 或活性氮释放,杀死巨噬细胞胞内 Mtb[8]。虽然早期报道认为,肉芽肿是机体的一种保护反应,可以将感染细菌局限在其内,限制其生长,甚至清除细菌[5],然而更多研究发现,聪明的 Mtb会通过各种机制操控机体的免疫应答,利用肉芽肿作为“安全庇护所”,寻找营养并抵御宿主免疫杀伤,实现长期存活,甚至利用肉芽肿的形成促使其在体内扩散和传播[13-15]。
-
与其他炎症性病变类似,结核性肉芽肿的形成以细胞和系统水平的代谢状态改变为主要特征,其在Mtb感染的清除过程中发挥极其重要的作用。浸润到Mtb感染区域的细胞代谢水平变化与Mtb自身不断变化的代谢谱展现出相似之处。已发现Mtb感染可能通过增加的葡萄糖氧化、氧化应激和脂质过氧化等代谢过程,上调结核阳性患者痰标本中d-葡萄糖酸、d-内酯、戊二酸、丁醛和乙烷等多种代谢物水平[16]。在感染Mtb的豚鼠中也发现了类似的代谢反应[17-18]。免疫细胞的促炎和抗炎表型都与其细胞代谢密切相关。为了响应细胞因子或抗原介导的刺激,免疫细胞经历了从氧化磷酸化到糖酵解的代谢转变。激活的免疫细胞不是利用三羧酸循环和氧化磷酸化,而是通过摄取以及利用葡萄糖生成乳酸而产生能量[19]。这些代谢特征的改变被认为是肉芽肿微环境中缺氧、低 pH 值和营养受限等多种压力作用的结果。多种独特的代谢反应改变了肉芽肿中 Mtb以及免疫细胞的行为,最终形成细菌长期存活与免疫应答反应相平衡的状态。本文重点讨论结核性肉芽肿中与营养获取相关的3条代谢免疫调控机制的最新进展,分别是厌氧相关的代谢免疫调控机制、脂质重编程的相关机制以及氨基酸限制和利用的相关通路 (见图1)。
-
1 肉芽肿厌氧相关的代谢免疫调控机制
-
正如人类肺结核病变和各种动物模型所示,慢性结核性肉芽肿,尤其是发生干酪样坏死肉芽肿的关键特征是厌氧[20-22]。越来越多的证据表明,局部组织的氧含量与坏死性、纤维包裹性肉芽肿的形成以及感染的发展紧密相关[23-24]。尽管 Mtb 作为一种需氧菌,低氧可以限制其生长,但Mtb能够感应肉芽肿低氧的不利环境并做出反应以实现存活。目前认为 Mtb 在肉芽肿厌氧区域存活的一个可能原因是,免疫杀伤细胞关键的抗微生物功能,包括ROS 和一氧化氮 (Nitric Oxide,NO) 的产生需要氧气的存在。如果没有氧气,诱导型一氧化氮合成酶(inducible Nitric Oxide Synthase,iNOS) 就不能从 L-精氨酸生成 NO。同样,巨噬细胞的 NADPH 氧化酶负责将成熟吞噬体内的 O2转化为自由基超氧化物,然后通过超氧化物歧化酶转化为过氧化氢杀菌。而肉芽肿内的低氧环境可能导致巨噬细胞不能产生有效的ROS而杀死胞内菌[25-27]。
-
图1 结核性肉芽肿厌氧、脂质及氨基酸代谢免疫调控机制
-
Figure1 Immunometabolism regulatory mechanisms of tuberculous granuloma: hypoxia, lipid and amino acids
-
厌氧环境同样显著改变了免疫细胞的能量代谢。尽管糖酵解的能效较低,但由于在低氧条件下糖酵解也能使免疫细胞获取能量发挥作用[28],因此,糖酵解、葡萄糖转运和整体葡萄糖稳态是Mtb 感染期间与宿主免疫细胞能量代谢相关的关键过程。这些代谢过程主要通过磷脂酰肌醇 3-激酶 (Phosphatidylinositol3-Kinase,PI3K) 途径及其核心蛋白激酶 (Protein Kinase B,AKT)、腺苷酸活化蛋白激酶 (Adenosine Monophosphate-Activated Protein Kinase,AMPK) 和哺乳动物雷帕霉素靶蛋白 (mammalian Target Of Rapamycin,mTOR) 调节[19]。除此以外,厌氧可以抑制谷氨酰胺进入TCA 循环,而谷氨酰胺依赖性代谢途径已被证明是厌氧环境中细胞重要的生存策略[29]。免疫细胞还能够通过激活缺氧诱导因子 1 (Hypoxia Inducible Factor1,HIF-1) 介导的腺苷受体信号通路适应降低的氧浓度[30]。由此可见,免疫细胞在厌氧条件下维持代谢稳态的能力,对于抵抗Mtb感染的保护性免疫反应至关重要[31]。
-
Mtb 如何适应低氧,成为其在肉芽肿中存活的先决条件[24,32-35]。已发现,低氧诱导下,大量与 Mtb 代谢相关的基因转录水平发生显著变化,促进 Mtb 进入一种停止复制或低复制的休眠状态,从而逃脱机体的免疫反应,并对抗结核药物产生表型耐药[33-34]。Wayne 教授[35-36] 首先提出体外氧气浓度的重要性和低氧模型,他用非复制性持留 (Nonreplicating Persistence,NRP) 这一概念来形容 Mtb 在厌氧条件下长期存活的状态,并用简单的方法获得了厌氧生长的细菌。基于该模型,研究者通过基因组学、转录组学、蛋白质组学和代谢组学等方法系统研究了 Mtb 从对数期过渡到休眠以及从休眠到再活化的生理学过程[34,37-39]。 Galagan 等[34] 基于 Mtb 的 50 个转录因子重建了一个调控网络图,揭示了低氧反应与脂质分解代谢、合成代谢和细胞壁脂质产生之间的直接联系。本课题组的研究工作将一种参与 Mtb 脂肪酸代谢的酶 (Fatty-acid degradation A,FadA),确定为一种全新的分枝杆菌毒力因子,并且发现该蛋白通过一种不寻常的机制,将适应厌氧与抑制宿主抗结核免疫相结合,利用宿主来源的营养物质来促进肉芽肿的进展,从而实现分枝杆菌的持续性感染[39]。我们的研究还提示,Mtb在不同感染阶段可利用多种策略逃避免疫反应,早期巨噬细胞对其分泌的抗原 (Early Secreted Antigenic Target-6,ESAT-6) 作出反应,提高乙酰辅酶 A水平,从而促进酮体合成和脂质体的积累。而肉芽肿微环境中的厌氧信号,可特异性诱导 FadA 的分泌,在胞浆中发挥乙酰辅酶 A 乙酰转移酶活性,促使其生成乙酰乙酰辅酶 A,降低宿主乙酰辅酶 A水平,进而抑制胞核内组蛋白乙酰化介导的 IL-6表达,导致 IL-6保护作用下降,促进肉芽肿恶化。FadA 通过消耗宿主乙酰辅酶 A 以抑制抗结核免疫,与利用宿主来源的脂肪酸作为营养来源不同,其代表了一种分枝杆菌在厌氧条件下拦截宿主脂肪酸代谢以实现持续感染的不寻常的策略。这些结果进一步拓展代谢分子及代谢通路在细菌感染致病过程中的功能认识,对于阐明代谢免疫在肉芽肿进展中的关键作用具有重要价值。同时,也为通过靶向分枝杆菌和宿主脂肪酸代谢之间的界面来消除结核病甚至耐药结核病提供了新的靶标和策略。
-
2 肉芽肿脂质重编程相关代谢调控机制
-
Mtb需要各种营养物质,特别是脂质。脂质作为主要碳源和能量,是决定分枝杆菌能否长期存活的重要代谢产物[40]。越来越多的证据表明,在感染过程中,Mtb不仅利用来自宿主的营养物质 (包括脂肪酸和胆固醇) 维持其活性,更可利用这些脂类物质及其代谢产物导致宿主细胞生理和新陈代谢发生明显变化,引发并促进疾病进展[41-42]。感染 Mtb 后,形成富含脂质的环境是结核性肉芽肿的另一个关键特征[43-46]。在含有 Mtb 的肉芽肿中,脂质的积累主要有两个步骤:第一步是将Mtb感染的巨噬细胞转化为泡沫样表型;第二步是产生包含大量死亡细胞的坏死核心,从而形成特征性干酪样坏死肉芽肿病变。
-
现有证据表明,在细胞内存活期间,病原体主要依赖于胆固醇和脂肪酸代谢来获取营养[42,47]。泡沫巨噬细胞内的脂滴被认为是胞内杆菌的主要营养来源[45,48]。研究发现,Mtb 在厌氧条件下调节巨噬细胞代谢以促进脂质体的积累,从而在肉芽肿内中央坏死区域处产生特征性的“泡沫样”巨噬细胞[49-51],形成一个对 Mtb 相对安全的空间。在这个空间内,病原体受到保护,免受诸如抗菌肽等杀菌机制的影响[45]。尽管脂质体积累可促进Mtb存活的表型已经得到充分证实,但对病原体诱导巨噬细胞泡沫样变的机制仍在探索。研究发现,巨噬细胞被 Mtb关键毒力因子 ESAT-6驱动进入合成代谢状态,刺激 GLUT-1葡萄糖转运蛋白从细胞质转运到细胞膜,从而显著增强葡萄糖摄取和代谢[45]。同时, ESAT-6 似乎也提高了宿主细胞几种糖酵解酶的活性,从而扰乱了糖酵解和三羧酸循环之间的正常通量[52],进一步导致磷酸二羟基丙酮的积累,而磷酸二羟基丙酮正是合成三酰基甘油 (Triacylglycerol, TAG) 的底物。ESAT-6 抑制宿主葡萄糖代谢,促进脂质体积累,从而促进泡沫巨噬细胞分化的同时,还会阻止脂质的分解代谢。此外,脂质体形成不需要活的分枝杆菌,可以由Mtb细胞壁成分,例如阿拉伯甘露聚糖 (Mannose-capped Lipoarabino‐ mannan,ManLAM) 和海藻糖二霉菌酸酯 (Treha‐ lose ‐6,6' ‐Dimycolate,TDM) 以部分 TLR2 (Foll-Like Receptor 2) 依赖性方式驱动[53]。Ouimet 等[54] 在体外和小鼠巨噬细胞中证明,感染 Mtb导致宿主一种 microRNA (miR-33) 上调,进而抑制自噬的关键效应分子。而自噬可通过降解脂质体内的 TAG 和胆固醇酯来促进脂质分解代谢 (脂肪自噬)。miR-33介导的自噬抑制导致细胞脂肪酸氧化减少,并增强脂质体的大小和数量,从而维持细胞内分枝杆菌的代谢和存活[55]。本课题组最新的研究工作揭示了一种新的介导泡沫样巨噬细胞形成的 Mtb 毒力因子及其调控机制[56]。尿素酶分泌蛋白 (Urease C, UreC),可与宿主 RUVBL2 (RuvB-Like Protein 2) 相互作用,进而阻碍 RUVBL1-RU‐ VBL2-RAD51 DNA 修复复合物的形成,显著抑制宿主DNA修复过程。这种DNA修复途径的阻断诱导了巨噬细胞胞内微核的形成,进而激活 cGAS/ STING 通路并诱导 IFN-β 的产生。而 IFN-β 通路激活会进一步诱导清道夫受体 A1 (Scavenger Receptor-A1,SR-A1) 的表达,增强 Mtb 感染泡沫样巨噬细胞的形成及其胞内存活[56],该发现阐释了一种全新的Mtb通过利用宿主细胞脂质代谢促进胞内存活的免疫逃逸策略,对于理解结核病的发病机制,开发新的抗结核药物至关重要。
-
结核性肉芽肿中脂质富集的另一种机制是干酪灶的形成[57]。富脂的干酪环境是由围绕在干酪坏死中心的泡沫样巨噬细胞逐渐发展而来[57]。活化的 T 淋巴细胞释放 IFN-γ激活附近的巨噬细胞,使受感染的泡沫样巨噬细胞发生坏死性死亡,进一步发展为干酪样坏死,导致脂质和大部分细胞碎片在干酪核心的积聚以及细胞外 Mtb 的播散[57-59],同时干酪坏死灶还能帮助细胞外 Mtb 抵抗抗生素的杀伤效果,实现长期存活[57,60-61]。研究发现,干酪样肉芽肿中与脂质调节功能有关的亲脂蛋白 (Adipose Differentiation-Related Protein,ADFP) 水平增加[57]。 ADFP不仅可以在细胞内脂滴检测到,在新干酪化的肉芽肿中也被检测到,提示ADFP可能来源于坏死的泡沫样巨噬细胞。总体而言,Mtb感染通过刺激细胞内脂质积聚形成泡沫样巨噬细胞,以及干酪样坏死性肉芽肿,不仅可以作为营养来源有利于 Mtb 的生长,更促进了 Mtb 对抗生素的表型耐药,导致治疗周期延长,同时增加了治疗副作用和耐药的风险。由于Mtb的缓慢生长、持留等特性与其脂质代谢以及宿主脂质的来源密切相关,探讨宿主脂质和Mtb之间的相互作用可能有助于开发新的靶向脂质代谢的治疗方法,有望缩短治疗时间,有效改善结核病控制的效果。
-
3 肉芽肿氨基酸限制和利用的免疫调控机制
-
氨基酸在宿主免疫、生长和各种生理功能中起着关键作用,是 NO、多胺、肌酸等的底物,也是包括 mTORC1、丝裂原活化蛋白激酶 (MitogenActivated Protein Kinase, MAPK) 和核因子 κB (Nuclear Factor kappa-B,NF-κB) [62-63] 在内多条细胞信号通路的调节因子,包括 L-精氨酸、L-色氨酸、天冬氨酸、谷氨酰胺、瓜氨酸在内的多种氨基酸,在分枝杆菌感染和宿主防御机制中发挥重要作用[64-66]。研究较多的仍是 L-精氨酸和 L-色氨酸氨基酸代谢通路在 Mtb 感染宿主免疫应答中的功能及机制。
-
在哺乳动物中,L-精氨酸是一种半必需氨基酸。在慢性感染如 Mtb 感染时,机体 L-精氨酸合成的量不足,必须从外部获得[67]。在体内平衡中, L-精氨酸具有两个关键的生化功能:蛋白质生物合成和肝尿素循环的中间体。在免疫反应中,L-精氨酸在M1型或M2型巨噬细胞分化中起着核心作用,决定了入侵病原体的命运[68]。在活化的巨噬细胞中,L-精氨酸主要通过两个途径代谢:一方面 iNOS基于L-精氨酸介导NO的产生。NO具有强大的杀菌活性,还调节了 IFN-γ 介导的抗 Mtb 活性和炎症反应[69];另一方面精氨酸酶 (Arginase1, Arg1) 也基于 L-精氨酸介导 L-鸟氨酸的产生,从而与 iNOS 竞争 L-精氨酸并限制 NO 产生,促进结核性肉芽肿中胶原蛋白合成,导致肉芽肿纤维化[70]。此外,L-精氨酸及其代谢对 T细胞的命运和功能也发挥重要调节作用。当 CD4+ T 细胞用 CD3 和 CD28抗体激活时,胞浆精氨酸、鸟氨酸和乙酰氯鸟氨酸水平与未激活的细胞相比显著降低[71]。当巨噬细胞通过 iNOS和/或 Arg1途径消耗 L-精氨酸,会导致肉芽肿局部L-精氨酸水平减少,进而限制T 细胞的功能。研究发现,Arg1和 iNOS双重缺陷的小鼠感染Mtb后会产生T细胞介导的病理变化,主要是肉芽肿数量、大小和坏死性肉芽肿数量的增加,并且不能像 iNOS 单敲小鼠那样有效地清除 Mtb[72]。因此,目前认为Arg1在分枝杆菌感染过程中至少有两种功能:抑制 NO 的产生和限制 T 细胞介导的病理变化。
-
鉴于 L-精氨酸在免疫细胞杀伤功能中的重要性,研究者尝试将补充L-精氨酸用于抗结核辅助治疗。已发现,口服L-精氨酸可减轻活动性结核病患者的咳嗽、胸痛、发热等症状,并增加痰标本转阴率[73],但后续研究发现,补充富含L-精氨酸的食品对结核病患者的痰涂片转阴率、体重、咳嗽和肺部病变并没有显著影响[74]。L-精氨酸与维生素D联用也没有发现可以有效改善结核病的症状[75]。因此,有关 L-精氨酸在结核病治疗中的应用还存在争议,有待进一步的探索。另一方面,从细菌角度而言, Mtb 所需的大部分精氨酸是由 N-乙酰谷氨酸 (NAcetyl Glutamic Acid,NAG) 通过一种独特的途径从头合成。该途径是细菌和植物特有,因此成为抗结核药物开发的潜在靶标。研究发现,Pranlukast (PRK) 是 Mtb 鸟氨酸乙酰转移酶 (Ornithine Acetyltransferase,ArgJ) 的特异性抑制剂[76],可以抑制Mtb在巨噬细胞中的存活却对宿主细胞不产生影响,而补充精氨酸可以回复其抑制作用。此外, PRK 处理可以促进 Mtb 感染小鼠肺部细菌的死亡,并减少肉芽肿形成[77]。这些发现为针对精氨酸合成及代谢途径开发抗结核药物奠定了基础。
-
L-色氨酸是一种必需氨基酸,必须从饮食或微生物代谢中获得。除了是蛋白质的组成部分外,L色氨酸还是血清素、褪黑激素和烟酸 (维生素B3) 的前体[78-79]。吲哚胺 2,3-双加氧类酶 (Indoleamine2,3-Dioxygenase,IDO1&IDO2) 是 L-色氨酸代谢途径中重要的限速酶,其与Mtb感染的免疫反应有关。研究已发现,IDO包括巨噬细胞、树突状细胞和内皮细胞在内的多种细胞类型中,被细菌分子和 IFN-γ 共刺激的反应所诱导表达[80-82]。在应对 Mtb 的反应中,巨噬细胞在体外和体内都会表达 IDO1[83-84]。研究人员通过对结核患者样本分析,发现重症结核病患者血清和胸腔积液中的L-色氨酸减少,同时L-犬尿氨酸浓度增加,因此认为,IDO活性是疾病严重程度的潜在预后指标[85-86]。Mehra 等[87] 发现IDO表达集中在富含巨噬细胞的肉芽肿区域。此外,IFN-γ触发的 IDO 在造血细胞和非造血细胞中的表达有助于小鼠感染Mtb后的宿主免疫应答[88]。这些研究均提示,IDO表达是一种与抗结核免疫应答相关的宿主反应。那么IDO活性如何影响 Mtb 感染相关的免疫反应或病理改变?研究发现, T细胞成为IDO阳性细胞时功能会受损[89-90],此外, IDO活性还能诱导调节性T细胞,进而降低免疫活性[91]。当使用1-甲基色氨酸抑制IDO时,外周血中 T细胞产生Th1细胞因子的能力得到回复[92]。然而,利用 IDO1 敲除小鼠进行 Mtb 感染,却发现并不会导致小鼠体内分枝杆菌荷菌量或存活率的显著变化[83]。这些矛盾的结果提示,IDO分子在结核病感染致病中的作用需要系统深入地再评估。
-
Mtb自身可以合成L-色氨酸,因此仅通过提高宿主 IDO 活性限制肉芽肿微环境中 L-色氨酸水平并不能抑制分枝杆菌的生长。然而,在保证IDO活性的条件下进一步阻断Mtb的L-色氨酸代谢,有可能发挥抑菌作用。利用转座子突变文库筛选,研究发现,L-色氨酸营养缺陷的Mtb突变体可以在缺乏 CD4+T细胞的小鼠中存活,但在对照野生型小鼠中不能存活。进一步研究发现,CD4+T细胞通过产生 IFN-γ 促进巨噬细胞 IDO 活性,迫使 Mtb 合成自己的L-色氨酸。而利用2-氨基-6-氟苯甲酸与IFN-γ协同作用可抑制细菌L-色氨酸合成,阻断了分枝杆菌的体内外生长,发挥治疗效果[93]。由于哺乳动物不具备L-色氨酸合成途径,靶向Mtb的L-色氨酸合成途径有可能开发新的结核病治疗策略。
-
除了上述两种免疫系统用来产生免疫激活或免疫抑制产物的关键氨基酸,Mtb在肉芽肿不利生长条件下,是否以及如何调节自身的氨基酸代谢以逃避宿主免疫杀伤仍有待于进一步探讨。本课题组关注了氨基酸代谢是否在Mtb适应厌氧进而调控肉芽肿进程中发挥重要功能,进一步开展了有氧或厌氧生长 Mtb 培养滤过上清的比较代谢组学分析,发现厌氧引起 Mtb 多种代谢物分泌水平的变化,而丝氨酸上升的倍数尤其显著,达到了 100 倍以上。进一步利用 D-丝氨酸检测试剂盒,确认厌氧诱导了 D-丝氨酸在体内外的大量分泌。通过有氧厌氧 Mtb 菌体蛋白质组分析及基因敲除技术,确认厌氧条件下蛋白表达水平显著上调的丝氨酸代谢通路关键酶 (phosphserine Aminotransferase, SerC) 介导了D-丝氨酸的产生和分泌。进一步研究发现, SerC 介导的 D-丝氨酸分泌抑制了分枝杆菌的体外厌氧生长[94],但在体内却同时抑制宿主的固有免疫及适应性免疫应答,显著促进分枝杆菌在厌氧性肉芽肿中的存活,其作用机制正在深入研究。
-
4 总结
-
肉芽肿环境中的各种代谢分子及免疫细胞的代谢级联反应在疾病进展和机体抗结核免疫应答中发挥关键作用。而Mtb通过自身代谢重编程,改变宿主关键代谢通路,在抵抗免疫防御的同时获取营养物质,实现在宿主体内的长期存活,并伺机增殖促进肉芽肿进展。针对目前肉芽肿代谢免疫调控机制的研究进展,我们提出以下3个关键问题:(1) 肉芽肿内不同免疫细胞在不同进程的代谢反应及其介导的功能分别是什么?我们认为要回答这个问题,需要整合单细胞转录组测序及单细胞代谢组分析技术对肉芽肿进行全面解析,以更好地表征不同免疫细胞的动态变化,明确其功能及关键代谢免疫通路。(2) 肉芽肿内Mtb应对多种不利环境压力的转录及代谢调控机制是什么?我们认为随着单细菌测序技术及原位杂交手段的飞速发展,有望实时追踪肉芽肿内部Mtb关键分子的转录变化及其下游代谢产物的水平变化,从而揭示Mtb能够长期存活、休眠复苏的核心机制。(3) 如何更好地联合使用宿主靶向治疗与抗结核药物以控制结核病进展?尽管在这一领域已经取得了不少进展,但无论是宿主靶向治疗,还是抗结核药物化疗伴随的机体损伤及副作用的产生,均对抗结核新药开发提出了更多要求及挑战。我们相信更好地了解免疫细胞代谢状态的动力学及其在结核病发病过程中的特定功能,才能更有效地开发出促进Mtb清除和减少Mtb持留的免疫疗法,同时减少耐药菌株的出现。
-
参考文献
-
[1] World Health Organization.Global tuberculosis report 2023 [R/OL].[2023-11-07].https://www.who.int/publications/i/item/9789240083851.
-
[2] HOUBEN R M,DODD P J.The global burden of latent tuberculosis infection:A re-estimation using mathematical modelling[J].PLoS Med,2016,13(10):e1002152.
-
[3] ERNST J D.The immunological life cycle of tuberculosis [J].Nat Rev Immunol,2012,12,581-591.
-
[4] CHAI Q,WANG L,LIU C H,et al.New insights into the evasion of host innate immunity by Mycobacterium tuberculosis[J].Cell Mol Immunol,2020,17:901-913.
-
[5] ULRICHS T.Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung[J].Pathol,2004,204:217-228.
-
[6] RAMAKRISHNAN L.Revisiting the role of the granuloma in tuberculosis[J].Nat Rev Immunol,2012,12:352-366.
-
[7] GUIRADO E,SCHLESINGER L S.Modeling the Mycobacterium tuberculosis granuloma-the critical battlefield in host immunity and disease[J].Front Immunol,2013,4:98.
-
[8] ULRICHS T,KAUFMANN S H.New insights into thefunction of granulomas in human tuberculosis[J].Pathol,2006,208:261-269.
-
[9] SILVAMIRANDA M,BREIMAN A,ALLAIN S,et al.The tuberculous granuloma:An unsuccessful host defence mechanism providing a safety shelter for the Bacteria?[J].Clin Dev Immunol,2012,2012:139127.
-
[10] CRONAN M R.In the thick of it:Formation of the tuberculous granuloma and its effects on host and therapeutic responses[J].Front Immunol,2022,13:820134.
-
[11] SCRIBA T J,COUSSENS A K,FLETCHER H A,et al.Human immunology of tuberculosis[J].Microbiol Spectr,2017,5:1.
-
[12] HUNTER L,RUEDAS-TORRES I,AGULLÓ-ROS I,et al.Comparative pathology of experimental pulmonary tuberculosis in animal models[J].Front Vet Sci,2023,10:1264833.
-
[13] WARNER D F.Mycobacterium tuberculosis metabolism[J].Cold Spring Harb Perspect Med,2015,5:a021121.
-
[14] SAVIOLA B.Tuberculosis-Current issues in diagnosis and Manangement[M].London,intechopen,2013:1-18.
-
[15] LIMA A,LEYVA A,RIVERA B,et al.Proteome remodeling in the mycobacterium tuberculosis PknG knockout:Molecular evidence for the role of this kinase in cell envelope biogenesis and hypoxia response[J].J Proteomics,2021,2021:104276.
-
[16] DU PREEZ I,LOOTS D T.New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis,and vice versa[J].Tuberculosis(Edinb),2013,93(3):330-337.
-
[17] SOMASHEKAR B S.Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs:Ex vivo 1H magic angle spinning NMR studies[J].J Proteome Res,2011,10(9):4186-4195.
-
[18] SOMASHEKAR B S.Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis[J].J Proteome Res,2012,11(10):4873-4884.
-
[19] FOX C J,HAMMERMAN P S,THOMPSON C B.Fuel feeds function:Energy metabolism and the T-cell response [J].Nat Rev Immunol,2005,5(11):844-852.
-
[20] ALY S.Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice[J].J Pathol,2006,210(3):298-305.
-
[21] MING C T,CHAKRACARTYS,ZHU G,et al.Characterization of the tuberculous granuloma in murine and human lungs:Cellular composition and relative tissue oxygen tension[J].Cell Microbiol,2010,8(2):218-232.
-
[22] VIA L E.Tuberculous granulomas are hypoxic in guinea pigs,rabbits,and nonhuman primates[J].Infect Immun,2008,76(6):2333-2340.
-
[23] CHAO M C,RUBIN E J.Letting sleeping dos lie:Does dormancy play a role in tuberculosis?[J] Annu Rev Microbiol,2010,64:293-311.
-
[24] RITTERSHAUS E S,BAEK S H,SASSETTI C M.The normalcy of dormancy:Common themes in microbial quiescence[J].Cell Host Microbe,2013,13(6):643-651.
-
[25] DEFFERT C,CACHAT J,KRAUSE K H.Phagocyte NADPH oxidase,chronic granulomatous disease and mycobacterial infections[J].Cell Microbiol,2014,16(8):1168-1178.
-
[26] YANG C T,CAMBIER C J,DAVIS J M,et al.Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages[J].Cell Host Microbe,2012,12(3):301-312.
-
[27] PALANISAMY G S,KIRK N M,ACKART D F,et al.Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis[J].PLoS One,2011,6(10):e26254.
-
[28] DELMASTRO-GREENWOOD M M,PIGANELLI J D.Changing the energy of an immune response[J].Am J Clin Exp Immunol,2013,2(1):30-54.
-
[29] WALLIS R S,HAFNER R.Advancing host-directed therapy for tuberculosis[J].Nat Rev Immunol,2015,15(4):255-263.
-
[30] SITKOVSKY M,LUKASHEV D.Regulation of immune cells by local-tissue oxygen tension:HIF1 alpha and adenosine receptors[J].Nat Rev Immunol,2005,5(9):712-721.
-
[31] MACIVER N J.Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival[J].J Leukoc Biol,2008,84(4):949-957.
-
[32] BARRY C E,BOSHOFF H I,DARTOIS V,et al.The spectrum of latent tuberculosis:Rethinking the biology and intervention strategies[J].Nat Rev Microbiol,2009,7(12):845-855.
-
[33] MATTY M A,ROCA F J,CRONAN M R,et al.Adventures within the speckled band:Heterogeneity,angiogenesis,and balanced inflammation in the tuberculous granuloma[J].Immunol Rev,2015,264(1):276-287.
-
[34] GALAGAN J E,MINCH K,PETERSON M,et al.The Mycobacterium tuberculosis regulatory network and hypoxia[J].Nature,2013,499(7457):178-183.
-
[35] WAYNE L G,HAYES L G.An in vitro model for sequential study of shift down of Mycobacterium tuberculosis through two stages of nonreplicating persistence[J].Infect Immun,1996,64(6):2062-2069.
-
[36] WAYNE L G,SOHASKEY C D.Nonreplicating persistence of Mycobacterium Tuberculosis[J].Annu Rev Microbiol,2001,55:139-163.
-
[37] GOPINATH V,RAGHUNANDANAN S,GOMEZ R L,et al.Profiling the proteome of mycobacterium tuberculosisduring dormancy and reactivation[J].Mol Cell Proteomics,2015,14(8):2160-2176.
-
[38] ROSENKRANDS I,SLAYDEN R A,CRAWFORD J,et al.Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins[J].Bacteriol,2002,184(13):3485-3491.
-
[39] YANG H,WANG F,GUO X,et al.Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity[J].Cell Discov,2021,7(1):90.
-
[40] PANDEY A K,SASSETTI C M.Mycobacterial persistence requires the utilization of host cholesterol[J].Proc Natl Acad Sci USA,2008,105(11):4376-4380.
-
[41] RUSSELL D G,HUANG L,VANDERVEN B C.Immunometabolism at the interface between macrophages and pathogens[J].Nat Rev Immunol,2019,19(5):291-304.
-
[42] WILBURN K M,FIEWEGER R A,VANDERVEN B C.Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis[J].Pathog Dis,2018,76(2):fty021.
-
[43] RUSSELL D G,CARDONA P J,KIM M J.Foamy macrophages and the progression of the human tuberculosis granuloma[J].Nat Immunol,2009,10(9):943-948.
-
[44] KIM M J,WAINWRIGHT H C,LOCKETZ M.Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism[J].EMBO Mol Med,2010,2(7):258-274.
-
[45] PEYRON P,VAUBOURGEIX J,POQUET Y.Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M tuberculosis persistence[J].PLoS Pathog,2008,4(11):e1000204.
-
[46] SHIM D,KIM H,SHIN S J.Mycobacterium tuberculosis infection-driven foamy macrophages and their implications in tuberculosis control as targets for host-directed therapy[J].Front Immunol,2020,11:910.
-
[47] NAZAROVA E V,MONTAGUE C R,LA T,et al.Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis[J].Elife,2017,6:e26969.
-
[48] SINGH V,JAMWAL S,JAIN R,et al.Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype[J].Cell Host Microbe,2012,12:669-681.
-
[49] GRIFFIN J E,PANDEY A K,GILMORE S A,et al.Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations[J].Chem Biol,2012,19(2):218-227.
-
[50] MARRERO J,RHEE K Y,SCHNAPPINGER D,et al.Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection[J].Proc Natl Acad Sci USA,2010,107(21):9819-9824.
-
[51] MUNOZ-ELIAS E J,MCKINNEY J D.Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence[J].Nat Med,2005,11(6):638-644.
-
[52] SINGH V,KAUR C,CHAUDHARY V K,et al.Mycobac‐ terium tuberculosis secretory protein ESAT-6 induces metabolic flux perturbations to drive foamy macrophage differentiation[J].Sci Rep,2015,5:12906.
-
[53] GLEESON L E,SHEEDY F J,PALSSON-MCDERMOTT E M,et al.Cutting edge:Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macro‐ phages that is required for control of intracellular bacillary replication[J].J Immunol,2016,196(6):2444-2449.
-
[54] OUIMET M,KOSTER S,SAKOWSKI E,et al.Myco‐ bacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism[J].Nat Immunol,2016,17(6):677-686.
-
[55] SINGH R,CUERVO A M.Autophagy in the cellular energetic balance[J].Cell Metab,2011,13(5):495-504.
-
[56] LIU S S,GUAN L R,DENG C,et al.Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival[J].Cell Host & Microbe,2023,31:1-17.
-
[57] KIM M J,WAINWRIGHT H C,LOCKETZ M,et al.Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism[J].EMBO Mol Med,2010,2(7):258-274.
-
[58] SARATHY J P,DARTOIS V.Caseum:A niche for Myco‐ bacterium tuberculosis drug-tolerant persisters[J].Clin Microbiol Rev,2020,33(3):e00159-19.
-
[59] GROSSET J.Mycobacterium tuberculosis in the extracellular compartment:An underestimated adversary[J].Antimicrob Agents Chemother,2003,47(3):833-836.
-
[60] DRIVER E R,RYAN G J,HOFF D R et al.Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2012,56(6):3181-3195.
-
[61] CHEN R Y,YU X,SMITH B,et al.Radiological and functional evidence of the bronchial spread of tuberculosis:An observational analysis[J].Lancet Microbe,2021,2(10):e518-e526.
-
[62] CROWTHER R R,QUALLS J E.Metabolic regulation of immune responses to Mycobacterium tuberculosis:A spotlight on L-arginine and L-tryptophan metabolism[J].Front Immunol,2020,11:628432.
-
[63] HOWARD N C,KHADER S A.Immunometabolism during Mycobacterium tuberculosis Infection[J].Trends Microbiol,2020,28:832-850.
-
[64] LI X Y.Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism[J].Amino Acids,2023,55:1487-1499.
-
[65] REN W.Amino acids as mediators of metabolic cross talk between host and pathogen[J].Front Immunol,2018,9:319.
-
[66] QUALLS J E,MURRAY P J.Immunometabolism within the tuberculosis granuloma:Amino acids,hypoxia,and cellular respiration[J].Semin Immunopathol,2016,38:139-152.
-
[67] MORRI S M.Arginine metabolism:Boundaries of our knowledge[J].J Nutr,2007,137(6 Suppl 2):1602S-1609S.
-
[68] MILLS C D.Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline:A life or death issue[J].Crit Rev Immunol,2001,21:399-425.
-
[69] TAYEH M A,MARLETTA M A.Macrophage oxidation of L-arginine to nitric oxide,nitrite,and nitrate[J].Biol Chem,1989,264:19654-19658.
-
[70] DUQUE-CORREA M A.Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas[J].Proc Natl Acad Sci USA,2014,111:E4024-4032.
-
[71] GEIGER R,RIECKMANN J C,WOLF T,et al.Larginine modulates T cell metabolism and enhances survival and anti-tumor activity[J].Cell,2016,167:829-842.e813.
-
[72] DUQUE-CORREA M A,KUHL A A,RODRIGUEZ P C,et al.Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas[J].Proc Natl Acad Sci USA,2014,111(38):E4024-E4032.
-
[73] SCHÖN T,ELIAS D,MOGES F,et al.Arginine as an adjuvant to chemotherapy improves clinical outcome in active tuberculosis[J].Eur Respir J,2003,21(3):483-488.
-
[74] SCHÖN T,IDH J,WESTMAN A,et al.Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis-a randomised trial[J].Tuberculosis(Edinb),2011,91(5):370-377.
-
[75] RALPH A P,WARAMORI G,PONTORORING G J,et al.L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis:a randomised,double-blind,placebo-controlled trial[J].PLoS One,2013,8(8):e70032.
-
[76] BERNEY M,BERNEY-MEYER L.Mycobacterium tuberculosis in the face of hostimposed nutrient limitation [J].Microbiol Spectr,2017,5:1-17.
-
[77] MISHRA A,MAMIDI A S,RAJMANI R S,et al.An allosteric inhibitor of Mycobacterium tuberculosis ArgJ:Implications to a novel combinatorial therapy[J].EMBO Mol Med,2018,10:1-21.
-
[78] LI P,YIN Y L,LI D,et al.Amino acids and immune function[J].Br J Nutr,2007,98(2):237-252.
-
[79] LE FLOC'H N,OTTEN W,MERLOT E.Tryptophan metabolism,from nutrition to potential therapeutic applications[J].Amino Acids,2011,41(5):1195-1205.
-
[80] MELLOR A L,MUNN D H.IDO expression by dendritic cells:Tolerance and tryptophan catabolism[J].Nat Rev Immunol,2004,4(10):762-774.
-
[81] WANG Y,LIU H,MCKENZIE G,et al.Kynurenine is an endothelium-derived relaxing factor produced during inflammation[J].Nat Med,2010,16(3):279-285.
-
[82] ZELANTE T,FALLARINO F,BISTONI F,et al.Indoleamine 2,3-dioxygenase in infection:The paradox of an evasive strategy that benefits the host[J].Microbes Infect,2009,11(1):133-141.
-
[83] BLUMENTHAL A,NAGALINGAM G,HUCH J H,et al.Mycobacterium tuberculosis induces potent activation of IDO-1,but this is not essential for the immunological control of infection[J].PLoS One,2012,7(5):e37314.
-
[84] MEHRA S,PAHAR B,DUTTA N K,et al.Transcriptional reprogramming in nonhuman primate(rhesus macaque)tuberculosis granulomas[J].PLoS One,2010,5(8):e12266.
-
[85] SUZUKI Y,MIWA S,AKAMATSU T,et al.Indoleamine 2,3-dioxygenase in the pathogenesis of tuberculous pleurisy [J].Int J Tuberc Lung Dis,2013,17(11):1501-1506.
-
[86] SUZUKI Y,SUDA T,ASADA K,et al.Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis[J].Clin Vaccine Immunol,2012,19(3):436-442.
-
[87] MEHRA S,ALVAREZ X,DIDIER P J,et al.Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis[J].J Infect Dis,2013,207(7):1115-1127.
-
[88] DESVIGNES L,ERNST J D.Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis[J].Immunity,2009,31(6):974-985.
-
[89] MUNN D H,SHARMA M D,LEE J R,et al.Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase[J].Science,2002,297(5588):1867-1870.
-
[90] TERNESS P,BAUER T M,ROSE L,et al.Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxy‐genase-expressing dendritic cells:Mediation of suppression by tryptophan metabolites[J].J Exp Med,2002,196(4):447-457.
-
[91] FALLARINO F,GROHMANN U,YOU S,et al.Trypto‐ phan catabolism generates autoimmune-preventive regulatory T cells[J].Transpl Immunol,2006,17(1):58-60.
-
[92] LI Q,LI L,LIU Y,et al.Pleural fluid from tuberculous pleurisy inhibits the functions of T cells and the differentiation of Th1 cells via immunosuppressive factors[J].Cell Mol Immunol,2011,8(2):172-180.
-
[93] ZHANG Y J,REDDY M C,IOERGER T R,et al.Tryptophan biosynthesis protects mycobacteria from CD4 T-cellmediated killing[J].Cell,2013,155(6):1296-1308.
-
[94] CHENG H.Mycobacterium tuberculosis produces D-serine under hypoxia to limit CD8+ T cell-dependent immunity in mice[J].Nature Microbiology,2024.
-
摘要
结核病仍然严重威胁人类健康。结核性肉芽肿是结核病的典型病理特征,也是结核分枝杆菌Mtb逃避宿主免疫杀伤实现长期存活及潜伏感染的“避难所”。结核分枝杆菌还利用肉芽肿促进其在体内扩散和传播,导致疾病迁延不愈,难以根除。肉芽肿环境中的代谢级联反应和免疫细胞产生的相关代谢物在疾病进展和诱导抗结核保护性免疫中发挥关键作用。而 Mtb可以通过自身毒力因子,靶向宿主关键代谢通路抵抗免疫防御,实现长期存活并伺机增殖促进肉芽肿进展。本文对结核性肉芽肿中 Mtb与宿主相互作用的关键代谢免疫通路及其调控机制展开论述,为后续靶向肉芽肿发病进程开发新的结核病防治策略提供参考。
Abstract
Tuberculosis (TB) remains a significant threat to human health. Tuberculous granuloma is a typical pathological feature of TB and also a "refuge" for Mycobacterium tuberculosis (Mtb) to escape host immune defense and achieve long-term survival and latent infection. Mtb exploits these granulomas to spread and propagate within the body, leading to persistent infections that are difficult to eradicate. The metabolic cascade reactions and metabolites produced by immune cells in the granuloma environment are crucial for disease progression and the induction of protective anti-tuberculosis immunity. Mtb can use its virulence factors to target key host metabolic pathways, resist immune defenses, achieve long-term survival, and promote granuloma progression. This paper discusses the key immunometabolism pathways and the regulation mechanism of Mtbhost interaction in granuloma. It provides insights for developing new tuberculosis prevention and treatment strategies targeting granuloma pathogenesis.