-
气道B细胞主要的致敏事件通常发生在构成咽淋巴环的扁桃体与腺样体等的上气道,即上呼吸道 (Upper Respiratory Tract,URT)。B 细胞通过其表面分布的 B 细胞受体 (B Cell Receptor,BCR) 识别外界抗原,是机体产生保护性抗体与免疫记忆的关键。抗原刺激也能推动呼吸道黏膜组织B细胞的异常免疫活化与增殖,导致相关免疫疾病[1]。B 细胞免疫活化调控与诸多 URT 疾病密切相关。腺样体与扁桃体作为机体抵抗外界病原体的防御器官,参与局部和全身免疫,异常的免疫激活和/或调节可致腺样体扁桃体肥大 (Adenotonsillar Hypertrophy, ATH) [2],其特征性的病理本质为淋巴滤泡增生,体内炎症介质与细胞增殖更为活跃,但其确切机制尚未明确,考虑为多因素触发的疾病。与B细胞反应相关呼吸道黏膜免疫对机体的保护作用不容忽视。腺样体与扁桃体作为 URT 典型的次级淋巴器官 (Secondary Lymphoid Organ,SLO),主要含有 B 细胞,且以分泌 IgG 的 B 细胞居多。B 细胞是其接触抗原引起免疫反应的关键细胞,可产生快速强大的免疫记忆反应。B细胞是ATH病理发生过程的主要参与者,在抗原刺激下异常活化增殖,导致呼吸道免疫功能紊乱。本文主要探讨B细胞免疫活化调控机制在 ATH 发生发展中可能的作用机理与内在关联。
-
1 ATH的临床特征与研究价值
-
SLO 主要包括脾、淋巴结、派氏集合淋巴结、腺样体、扁桃体以及小鼠或大鼠的鼻咽相关淋巴组织 (Nasopharynx-Associated Lymphoid Tissue, NALT) 等[3],是接受抗原刺激并产生免疫应答的主要部位。URT 充分暴露于空气,是吸入性病原体最早的接触位点,由黏膜下的淋巴组织发挥免疫功能,包括引流淋巴结和黏膜相关淋巴组织(Mucosa-Associated Lymphoid Tissue,MALT) [4-5]。 NALT作为健康人群 URT的 MALT,是人类咽淋巴环的重要组分[6-7],主要包括腺样体与扁桃体[8],而腺样体与扁桃体均有隐窝系统,利于抗原滞留,通过黏膜微环境直接接触抗原[9],是URT特异性体液和细胞免疫反应的黏膜诱导部位[10],在外源抗原摄取与刺激免疫反应过程中发挥重要作用,是 URT 的第一道防御门户。尤其是在黏膜部位的B细胞产生的抗原特异性IgA抗体,对阻止病原体的早期感染、复制及传播十分重要[11]。异常的免疫激活和/ 或调节可致 ATH 等多种病理状态。有研究报道, 18 岁以下人群 ATH 的年发病率为男童:159.1/10 万,女童:143.8/10万[12]。ATH 常合并复发性扁桃体炎及过敏性鼻炎、慢性鼻窦炎、分泌性中耳炎、阻塞性呼吸暂停 (Obstructive Sleep Apnea,OSA) 等诸多疾病[13-14],未经规范治疗可致面容发育异常、生长障碍、学习与行为问题等,早期适当干预可降低并发症的发生率,目前 ATH 的一线治疗方式为手术切除[15]。
-
ATH 与 URT 淋巴组织增生相关。研究表明,吸烟、过敏及呼吸道反复感染可能与淋巴组织一过性或永久性增生肥大相关[16-17],而这些危险因素均与炎症反应有关,表明炎症可能促进淋巴组织的增生。扁桃体、腺样体局部病原微生物与宿主黏膜免疫系统相互作用,可引起呼吸道免疫失调。遗传因素可能是 ATH 及其相关疾病 OSA 的致病机制之一[18],但其特定的免疫因素仍不清楚,淋巴滤泡增生的确切机制尚未明确。ATH 呈现出家族聚集性[12,19],某些单核苷酸多态性 (Single Nucleotide Polymorphism,SNP) 位点可能与ATH的遗传易感性有关[20-23],也有研究指出增殖相关基因活跃表达,与ATH存在潜在生物学相关性[24-25]。腺样体与扁桃体作为 URT 典型的 SLO,主要含约 65% 的 B细胞,约 5% 的巨噬细胞以及约 30% 的 CD3+ T 细胞[26],研究指出,肥大扁桃体的 T细胞和 B细胞计数的增加与细菌计数以及扁桃体大小呈正相关关系[27]。良性淋巴滤泡增生肥大的具体调节机制尚未明确,严重限制了疾病的风险预测。生发中心 (Germinal Center,GC) 是 B 细胞在 SLO 接受抗原刺激产生抗体介导免疫应答而形成的动态结构。扁桃体和腺样体的 B细胞接受特异性抗原刺激,在 T 细胞辅助下形成 GC,最终分化为浆细胞与记忆性 B细胞,产生抗体介导的免疫应答,分泌细胞因子参与免疫调控[28]。GC 是腺样体和扁桃体行使免疫功能的重要结构[29],诸多研究指出,ATH主要为 B 细胞异常增殖,腺样体、扁桃体 GC的增大与数量的增多[27,30-33];也有研究认为与淋巴滤泡体积增加有关,而与数量无关[34];还有研究认为与滤泡直径、面积和数量增加均相关[35]。与复发性扁桃体炎患者相比,单纯肥大的患者扁桃体 GC 更大[36-37],推测除炎症反应之外,还伴有 GC反应过度增强因素的影响。因此,深入探索 ATH 相关 B 细胞高增殖特性的潜在机制意义重大。
-
2 B细胞免疫活化调控机制的研究进展
-
B细胞是介导体液免疫应答的效应细胞。成熟初始 B 细胞通过 BCR 识别外界抗原,启动 B 细胞信号活化通路,经历体细胞高频突变与类别转换,分化为可快速分泌大量高亲和力保护性抗体的长寿命浆细胞和记忆性 B 细胞[38-39],而记忆性 B 细胞可在机体再次遭遇相同病原体及其变体时快速活化、高速增殖,介导高滴度、高亲合力的抗体应答。抗原驱动长寿命浆细胞和记忆性 B 细胞的免疫反应主要发生在 SLO 淋巴滤泡 GC,初始 B 细胞首先在滤泡与抗原相遇,此后包括两个阶段:第一阶段抗原刺激 BCR 诱导初始 B 细胞分化为短寿命浆细胞和滤泡 GC B 细胞;第二阶段抗原驱动 GC B 细胞分化为长寿命浆细胞和记忆性 B 细胞。在抗原记忆反应中,记忆性 B 细胞分化为长寿命浆细胞或重新进入 GC 进行 GC 反应[40]。B 细胞不同的分化方向取决于 BCR、Notch2 和 B 细胞激活因子 (B-Cell-Activating Factor,BAFF) 信号的整合,相对强的 BCR 信号有利于形成淋巴滤泡,而弱的 BCR 信号有利于形成边缘区 B 细胞。免疫球蛋白 (Immunoglobulin, Ig) 即抗体,包括分泌型 Ig (secreted Ig,sIg) 和膜型 Ig (membrane Ig,mIg), sIg 是浆细胞产生的免疫效应分子,mIg 即 BCR。 BCR 与包含免疫受体酪氨酸活化基序 (Immunore‐ceptor Tyrosine based Activation Motif, ITAM) 的 Igα/Igβ 异源二聚体以 1:1 组成 BCR 复合物[41-42]。Ig 均含有重链、轻链的可变区与恒定区,mIg还含有重链恒定区后的胞外近膜区、跨膜区和胞内区。 mIg 胞外可变区是 BCR 感知并捕获抗原的结构基础,负责特异性识别抗原。B细胞免疫活化受高度有序且精确的调控,其中,抗原与 BCR 结合后的早期分子事件对后续活化过程至关重要,调控二次免疫应答中记忆性B细胞的高效快速活化。
-
2.1 静息态下的BCR及其早期活化信号起始机制
-
B 细胞滋养信号是维持 B 细胞存活必需的[43],主要与 BCR 和 B 细胞激活因子受体 (B-Cell-Activating Factor Receptor,BAFFR) 有关。未结合抗原的静息状态下,BCR 自发地或通过与配体互作提供低水平的滋养信号,以维持B细胞存活。不同于 BCR 介导的 B 细胞激活信号,滋养信号的产生不需要 BCR 与抗原分子偶联。BAFFR 与其配体 BAFF 结合,可通过激活核因子 κB (Nuclear Factor-κB,NF-κB) 信号通路促进成熟 B细胞的存活[44-45],维持体内 B 细胞总数的动态平衡,BAFF 缺陷将导致成熟滤泡B细胞和边缘区B细胞群的缺失[46]。BCR 和 BAFFR 可能通过协同方式维持 B 细胞滋养信号。此外,BAFFR 还可由脾酪氨酸激酶 (Spleen tyrosine kinase,Syk) 通过磷脂酰肌醇-3激酶 (Phosphoinositide3-Kinase,PI3K) 和细胞外调节蛋白激酶 (Extracellular Signal-Regulated Protein Kinases,ERK) 通路进行信号转导。Syk缺失,细胞将失去响应 BAFFR 介导滋养信号的能力,而 BAFFR 信号会导致 Syk 和与 BCR 偶联的 Ig 分子磷酸化,提示 BCR可能作为 BAFFR信号通路中某些分子的适配蛋白,协同维持B细胞完成滋养信号的传递[47]。
-
高速高分辨活细胞成像技术应用于B细胞活化动态过程的研究,有助于探索B细胞活化早期极短时间内发生的分子事件及其生物学意义[48],尤其是在结合抗原后所经历的 BCR 寡聚化、BCR 微簇体及B细胞免疫突触高级结构的形成。BCR结合抗原后的早期分子事件至关重要,免疫突触形成的第一步是微簇体的形成。除 BCR 亲和力在 B 细胞克隆间的竞争作用外,高亲和力BCR更易形成低聚物,微簇体高速生长,并从封闭形式转变为开放形式,利于募集 Syk激酶触发更强的钙信号[49]。未结合抗原时,BCR在B细胞膜表面呈不规则分布。抗原刺激导致 BCR 交联和寡聚化,寡聚化 BCR 会向细胞膜脂筏区聚集,汇集 Lyn 等大量 Src 家族酪氨酸蛋白激酶,利于 BCR信号活化的起始[50]。ITAM 基序磷酸化是 BCR 下游信号转导的重要起始[51],激酶 Lyn 介导 ITAM 中的酪氨酸磷酸化,进而招募 Syk 并使其磷酸化,促进胞内信号分子形成信号体,开启 B 细胞活化的下游信号通路[52-53]。白细胞分化抗原 (Cluster of Differentiation,CD) 19 胞内段结构域ITAM 基序的酪氨酸也会被Lyn磷酸化[54]。CD45 可解除重要激酶磷酸化的抑制状态,利于 BCR 活化信号起始[55]。这些早期反应共同开启B细胞胞内信号通路,最终导致B细胞活化。此外,多价溶液相抗原可诱导 BCR 形成微簇体并激活 B 细胞,而单价溶液相抗原则无法有效地引起B细胞的活化应答[56],提示B细胞活化需要由抗原介导的BCR物理交联[57]。通过追踪细胞膜表面 BCR 的运动,发现 BCR 与单价膜联抗原结合后的运动速率显著变慢甚至“停止”,“停止”促进了 BCR 的寡聚化与信号的发生。IgM-BCR 的“停止”依赖于胞外近膜结构域Cμ4,而IgG-BCR则依赖于Cγ3胞外近膜结构域。尽管 BCR 微簇体可以是静止的,但微簇体所含 BCR 的数量及微簇体的大小都随时间不断增加,采用 Lyn和 Syk抑制剂预处理 B细胞,BCR微簇体在最初60 s的生长不受影响,但当超过某个大小后,就需要Lyn和Syk的活性及下游BCR信号组分的参与[58]。推测B细胞可感知早期微簇体生长捕获的抗原数量,当招募的 BCR 数量达到临界阈值时,微簇体的生长就必须依赖于 BCR 活化信号的产生。信号诱导细胞骨架的重塑有助于B细胞收集抗原和 BCR 微簇体的生长[59]。BCR 微簇体的活化可能导致体积更大聚簇体的形成,BCR 聚簇体向心运输至细胞接触面的中央区域,形成免疫突触的高级结构。
-
2.2 B细胞免疫记忆高效快速活化的分子机制及其下游信号转导
-
成熟初始 B 细胞表达 IgM-BCR,抗原刺激后分化为分泌抗体的浆细胞或表达 IgG-BCR 的记忆性 B 细胞[60]。与初次免疫不同,二次免疫反应的记忆性 B 细胞可快速增殖分化为浆细胞,迅速产生高滴度、高亲和力 IgG 抗体。IgG-BCR 能更快地介导 BCR 微簇体的形成与生长,引起更强的胞内活化信号。IgG 膜联重链胞内区结构域 (mIgG cytoplasmic tail/domain,mIgG-tail) 是 IgG-BCR 区别于 IgM-BCR 的关键所在,虽 IgG-BCR 的 IgG Fc 区比 IgM-BCR 的 IgM Fc 区短,但二者促进抗原结合触发BCR微簇体形成的效率类似,IgG+B细胞的优势与 mIgG-tail 有关,使 IgG+ 记忆性 B 细胞获得对抗原刺激快速、高效、灵敏的响应能力[61]。通过 mIgG-tail 的特殊结构实现对 IgG-BCR 活化信号的调控,增强 B细胞增殖反应,触发不同于 mIgM 的信号级联。mIgG重链在跨膜区之后为含 28个氨基酸的胞内区,且在不同种属和不同IgG亚型具有高度保守性,而 mIgM 的胞内区仅 3 个氨基酸[62], mIgG-tail 含 50% 疏水氨基酸,整体带正电[63] (见图1)。
-
IgG+B细胞通过IgG-BCR内在与外在方式增强抗体免疫记忆反应[64],内在方式依赖于 mIgG-tail[65],外在方式依赖于记忆性 B 细胞转录因子谱[64]。结合可溶性多价抗原后,mIgG-tail的免疫球蛋白胞质尾酪氨酸 (Immunoglobulin Tail Tyrosine, ITT) 基序被磷酸化[49,66],特定酪氨酸基序对ITAM 信号活性至关重要[67-68]。磷酸化的 ITAM 通过 SH2 结构域招募并激活 Syk激酶[69],将接头蛋白生长因子受体结合蛋白 2 (Growth Factor receptor-boundProtein 2, Grb2) 招募至 IgG-BCR,进而招募 Bruton 酪氨酸激酶 (Bruton's tyrosine kinase,Btk) 等下游信号分子,引发增强的钙信号,帮助相关激酶持续性活化及第二信使的产生,促进 B 细胞增殖[49,70]。mIgG-tail 近膜区含 SSVV 保守基序,促进 IgG-BCR 微簇体的形成。高亲和力 BCR 更易被抗原活化,更快地形成 BCR 寡聚体,引起更强的钙流信号及下游信号分子活化[58],产生更强T细胞依赖性抗体应答[71]。mIgG-tail因含较多碱性和疏水氨基酸而呈正电,在B细胞静息态下,与呈负电的细胞质膜内叶结合互作。抗原结合则驱动 mIgG-tail 与细胞质膜解离,暴露ITT基序,使其被磷酸化而增强B细胞活化信号[63]。此外,从BCR机械力感知的角度探索:表达 IgM-BCR 的 B 细胞在低、中、高机械力信号刺激下,活化强度递增;表达 IgGBCR 的 B 细胞活化所需机械力的阈值则极低[72]。 IgG-BCR的机械力超敏感阈值依赖于静息态mIgGtail与细胞膜内叶的贴附状态,mIgG-tail通过其所带正电荷,将带负电的磷脂酰肌4,5-二磷酸富集于细胞膜附近,进而降低了 IgG-BCR 机械力的活化阈值[73]。
-
图1 mIgM和mIgG的结构与组成
-
Figure1 Structure and composition of mIgM and mIgG
-
抗原结合致 BCR 寡聚化与活化信号的起始,招募多种信号分子,形成大的 BCR 信号体复合物,引发级联反应完成信号转导,该过程受多种蛋白严格有序且精确的调控。CD19 磷酸化招募并激活 PI3K,磷脂酰肌醇二磷酸[Phosphatidylinositol(4,5)bisphosphate,PIP2]转变为 PIP3,并在免疫突触聚集,招募 Btk 等多种含 PH 结构域的蛋白[74],受 BCR 信号体复合物中 Syk、Lyn及自身磷酸化的影响,转变为活化形式。活化型 Btk 与 Syk 又会磷酸化磷脂酶 Cγ2 (Phospholipase Cγ2,PLCg2),被激活的PLCg2能够水解细胞膜上的PIP2,产生第二信使:三磷酸肌醇 (Inositol1,4,5-Trisphosphate, IP3) 与二酰基甘油 (Diacyl Glycerol,DAG)。游离状态的 IP3 结合内质网上的 IP 受体,引发钙离子释放及胞外钙内流。DAG 和胞内提升的钙离子可招募与活化 BCR 信号通路中的蛋白激酶 C (Protein Kinase C, PKC), PKC 参与调节 Btk、 RasGRP3等多个信号分子[75-76]。支架蛋白对BCR信号转导也至关重要。缺失 B 细胞接头蛋白 (B Cell Linker Protein,BLNK) 的 B细胞不能招募 PLCg2,并抑制 BCR 信号介导的钙流。BLNK 蛋白含一个 SH2结构域与多个酪氨酸磷酸化位点,可结合多种效应分子[77]。伴随 BCR寡聚化,BLNK被 Syk迅速磷酸化,为 PLCg2 及 Btk 提供结合位点,并招募Grb2、VAV、Rac 等多种信号分子[78]。BCR 信号最终被整合并引起一系列转录因子活化,其中丝裂原活化蛋白激酶 (Mitogen-Activated Protein Kinase, MAPK) 家族的成员发挥重要作用,导致多种转录因子的磷酸化。PI3K 活化后会导致下游丝氨酸/苏氨酸激酶 (Serine/threonine kinase,Akt) 磷酸化激活,进而磷酸化叉头框蛋白 O (Forkhead Box O, FOXO) 调节其核定位。此外,PKC激活后磷酸化半胱天冬酶募集结构域 11 (Caspase Recruitment Domain Family Member 11, CARD11) 等,通过 NF-κB的抑制蛋白 (Inhibitor of NF-κB,IκB) 激活 NF-κB 并入核,引发效应靶基因的转录反应[52] (见图2)。
-
图2 抗原刺激后BCR信号通路的活化
-
Figure2 Activation of BCR signaling pathway after antigen stimulation
-
3 BCR 信号稳态失衡与异常活化与 ATH 的相关机制推理
-
B细胞活化是有序且受到严格调控的一系列分子事件的动态发展过程,B细胞识别外来抗原后进一步活化,过程中的细微变化均可能导致 BCR 信号稳态失衡以及 B 细胞的异常活化,引发相应疾病[79]。B 细胞通过滋养信号维持其存活与动态平衡,并受微环境的调控。异常增殖的B细胞摆脱外界环境的严格限制,机制推理可能与 BCR 滋养信号及 BCR 信号通路相关分子的突变有关,突变使相关信号通路发生异常活化,为B细胞提供了异常增殖信号。对 BCR 介导的抗原特异性 B 细胞免疫活化的分子机制及相关疾病的探索一直是基础免疫学研究的热点与难点,尤其是对记忆性B细胞反应内在机制的研究一直是热点问题,直至近年,B细胞免疫记忆的分子基础才有所明了,而相关信号节点异常是否与 B 细胞增殖相关疾病 ATH 存在机制相通的潜在联系,值得探索。
-
记忆性B细胞免疫记忆是疫苗发挥防护效应的基础,但在病理情况下,记忆性 B 细胞可被异常激活引发相关疾病[79]。Chen等[80] 发现了人免疫球蛋白重链亚型 1 基因 (Immunoglobulin Heavy Constant Gamma1,IGHG1) 编码的第 396 位甘氨酸到精氨酸的变异体,可简称为 IGHG1-G396R 变异体,该变异体位于 IgG1-BCR 胞内区酪氨酸后第五个氨基酸,图3 展示人 SNP 位点 rs117518546 在 mIgG1-tail 的G396R变异体,人mIgG-tail ITT基序 (绿色) 与 Y+5处G396氨基酸,该变异体通过增强ITT基序酪氨酸的磷酸化,调控IgG+ B细胞的活化、增殖及浆细胞分化,促进系统性红斑狼疮的发生、发展[80]。
-
建立同源基因 G390R 变异体基因敲入小鼠模型,称 G390R 小鼠,发现 mIgG-tail 影响 B 细胞活化、分化及抗体分泌等免疫反应过程[80],IgG-BCR 增强的信号转导有赖于 mIgG-tail酪氨酸的磷酸化,其ITT基序是IgG-BCR免疫记忆的信号放大器,该点突变致磷酸化的 ITT基序对下游 Grb2过度招募,免疫突触募集 Grb2 的 “ 招募与限制 ” 模式是 G390R IgG1+ B 细胞的主导模式 (见图4),G390R 变异体通过 Lyn 激酶增强 ITT 基序酪氨酸的磷酸化,增加B细胞免疫突触中磷酸化ITT基序的可用性 (或密度)。逃逸或解离的Grb2蛋白可被近端或附近磷酸化ITT基序再次结合,从而被高效地限制于 B 细胞免疫突触内,增加 Grb2 在免疫突触的招募与驻留时间,从而增强 BCR 信号转导,促进 B 细胞活化增殖。
-
图3 人IgG1-BCR的mIgG-tail G396R变异体
-
Figure3 mIgG-tail G396R variant of human IgG1-BCR
-
图4 Grb2接头蛋白在WT和G390R小鼠免疫突触不同的募集模式
-
Figure4 Distinct recruitment patterns of Grb2 adaptor protein in the immunological synapses of WT and G390R variant mice
-
该变异体引起 mIgG-tail 的状态改变,降低 IgG+ B 细胞的活化阈值,致 IgG1-BCR 过度活化,促进 IgG1 GC B 细胞或记忆性 B 细胞向浆细胞分化,导致B细胞过度异常活化的病理状态,显著增强 B 细胞 IgG1 的表达。G390R 小鼠脾 GC 反应增强。表现在人体,IGHG1-G396R 显著增加系统性红斑狼疮发病风险的具体分子机制考虑为甘氨酸到精氨酸的变异致 BCR 胞内区 ITAM 序列和激酶 Lyn 的亲和力增加,进而增强BCR胞内信号转导,当B 细胞遇到内源抗原信号刺激时,该变异体可降低B 细胞的活化阈值,对自身抗原产生病理性免疫反应,产生过多的自身免疫性抗体和浆细胞,诱导免疫复合物的沉积,导致炎症和组织损伤,增加了发病风险[80]。而当B细胞遭遇外源抗原刺激时,增殖与分化能力同样因胞内信号转导的增强而增强,携带 IGHG1-G396R 变异体的 B 细胞倾向于分化成具有IgG1抗体分泌能力的浆细胞,GC反应增强,以 B细胞异常活化增殖为切入点,腺样体与扁桃体作为 URT 的 SLO,从组织细胞成分与显微结构角度分析,均以 B细胞为主,IgG+ B细胞远多于 IgA+ B 细胞,且以分泌IgG1的B细胞比例最高[26]。B细胞亚型如此的分布特征,一方面提示IgG1可能是ATH 发生发展病理过程的重要参与者,另一方面说明,结合ATH淋巴滤泡增生的病理本质,与引起B细胞异常活化增殖 IGHG1-G396R 变异体的分子机制存在推理相通的深层关联。本研究团队未发表数据表明,该变异体是ATH可能的风险因子,同时,已明确了该变异体对大肠癌的抑制作用,肿瘤微环境中三级淋巴结构 (Tertiary Lymphoid Structures, TLS) 活跃形成[81],而 TLS是在非淋巴组织内形成的异位淋巴结构,与 SLO (如腺样体与扁桃体等) 具有相似的结构与功能特征。
-
此外,细胞膜表面的抑制型调控分子在降低异常活化,维持体内免疫平衡方面发挥重要作用。可结晶的 γ 受体 Ⅱ B 片段 (Fragment crystallizable γ Receptor ⅡB,FcgRⅡB) 是 Fc受体中唯一表达抑制型调控结构域的IgG恒定区Fc结构域的低亲和力受体,与体内抗原抗体复合物中 IgG 的 Fc 结构域结合,影响BCR免疫突触的形成,参与调控免疫细胞的活化过程。FcgRⅡB 与淋巴细胞异常活化及相关疾病关系密切。研究发现,红斑狼疮患者 FcgRⅡB 存在丧失功能的突变体 FcgRⅡB-I232T (FcgRⅡB穿膜区232位由I变为T),在抗原抗体复合物刺激后, FcγRⅡB-I232T 无法与免疫细胞质膜的脂筏区形成稳定的相互识别,进而无法负调控免疫细胞活化[82]。新近成像技术揭示了该突变体丧失阻止BCR 微簇体在 B 细胞免疫突触中的形成与成熟的能力,从而无法抑制 B 细胞活化早期分子事件的启动[83],携带 FcgRⅡB-I232T 突变体的 B 细胞免疫突触中 BCR 微簇体与一系列 BCR 信号分子微簇体存在异常共定位,促进 B 细胞的异常活化[84],此机制与 B 细胞异常增殖相关疾病 ATH 是否存在内在关联,有待深入探索。
-
4 结论
-
对B细胞存活与抗原激活机制的研究,既是对自然科学探索的需要,也是认识和干预免疫系统疾病的基础。长期以来,对BCR介导的抗原特异性B 细胞免疫活化的分子机制及相关疾病的探索是基础免疫学研究的热点与难点之一,探究BCR早期活化的分子机制及其调控通路,也为深入理解B细胞增殖相关疾病ATH的发病机制并寻找有效干预措施打下坚实的基础。未来研究可就BCR信号的起始、免疫突触的形成以及记忆性B细胞免疫记忆的作用机制等方面问题进行深入挖掘,以期在对B细胞异常增殖相关疾病的预防与诊疗领域实现新的突破。
-
参考文献
-
[1] KATO A,HULSE K E,TAN B K,et al.B-lymphocyte lineage cells and the respiratory system[J].J Allergy Clin Immunol,2013,131(4):933-957.
-
[2] SEISHIMA N,KONDO S,WAKISAKA N,et al.EBV infection is prevalent in the adenoid and palatine tonsils in adults[J].J Med Virol,2017,89(6):1088-1095.
-
[3] RUDDLE N H,AKIRAV E M.Secondary lymphoid organs:Responding to genetic and environmental cues in ontogeny and the immune response[J].J Immunol,2009,183(4):2205-2212.
-
[4] MCGRATH J,THAYAPARAN D,CASS S P,et al.Cigarette smoke exposure attenuates the induction of antigen-specific IgA in the murine upper respiratory tract [J].Mucosal Immunol,2021,14(5):1067-1076.
-
[5] RANDALL T D,MEBIUS R E.The development and function of mucosal lymphoid tissues:A balancing act with micro-organisms[J].Mucosal Immunol,2014,7(3):455-466.
-
[6] BRANDTZAEG P.Immune functions of nasopharyngeal lymphoid tissue[J].Adv Otorhinolaryngol,2011,72:20-24.
-
[7] KIYONO H,FUKUYAMA S.NALT-versus Peyer'spatch-mediated mucosal immunity[J].Nat Rev Immunol,2004,4(9):699-710.
-
[8] DOLEN W K,SPOFFORD B,SELNER J C.The hidden tonsils of Waldeyer's ring[J].Ann Allergy,1990,65(4):244-248.
-
[9] BRANDTZAEG P.Function of mucosa-associated lymphoid tissue in antibody formation[J].Immunol Invest,2010,39(4-5):303-355.
-
[10] ZUERCHER A W,COFFIN S E,THURNHEER M C,et al.Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses [J].J Immunol,2002,168(4):1796-1803.
-
[11] HAND T W,REBOLDI A.Production and function of immunoglobulin A[J].Annu Rev Immunol,2021,39:695-718.
-
[12] LUNDKVIST K,SUNDQUIST K,LI X,et al.Familial risk of sleep-disordered breathing[J].Sleep Med,2012,13(6):668-673.
-
[13] KADITIS A G,ALONSO ALVAREZ M L,BOUDEWYNS A,et al.Obstructive sleep disordered breathing in 2-to 18-year-old children:Diagnosis and management[J].Eur Respir J,2016,47(1):69-94.
-
[14] KRIUKOV A I,AIU I,ARKHANGEL'SKAIA I I,et al.Therapeutic and diagnostic criteria of choice of treatment methods in adenoid vegetations as a focus of chronic infection in childhood[J].Vestn Otorinolaringol,2008,(3):29-31.
-
[15] MITCHELL R B,ARCHER S M,ISHMAN S L,et al.Clinical practice guideline:Tonsillectomy in children(update)[J].Otolaryngol Head Neck Surg,2019,160(1_suppl):S1-S42.
-
[16] KADITIS A G,FINDER J,ALEXOPOULOS E I,et al.Sleep-disordered breathing in 3 680 Greek children[J].Pediatr Pulmonol,2004,37(6):499-509.
-
[17] ZHANG X,SUN B,LI S,et al.Local atopy is more relevant than serum sIgE in reflecting allergy in childhood adenotonsillar hypertrophy[J].Pediatr Allergy Immunol,2013,24(5):422-426.
-
[18] ARENS R,MARCUS C L.Pathophysiology of upper airway obstruction:A developmental perspective[J].Sleep,2004,27(5):997-1019.
-
[19] POLOTSKY V Y,O'DONNELL C P.Genomics of sleepdisordered breathing[J].Proc Am Thorac Soc,2007,4(1):121-126.
-
[20] SHABALDINA E V,SHABALDIN A V,RIAZANTSEV S V,et al.The role of cytokine gene polymorphisms in the development of hypertrophy of the tonsils of the lymphoid pharyngeal ring and atopic march in the children[J].Vestn Otorinolaringol,2013(6):18-23.
-
[21] ÖZDAŞ T,ÖZDAŞ S,BABADEMEZ M A,et al.Significant association between SCGB1D4 gene polymorphisms and susceptibility to adenoid hypertrophy in a pediatric population[J].Turk J Med Sci,2017,47(1):201-210.
-
[22] GRASSO D L,GUERCI V I,ZOCCONI E,et al.MBL2 genetic polymorphisms in Italian children with adenotonsillar hypertrophy[J].Int J Pediatr Otorhinolaryngol,2007,71(7):1013-1016.
-
[23] ATILLA M H,ÖZDAŞ S,ÖZDAŞ T,et al.Association of Ugrp2 gene polymorphisms with adenoid hypertrophy in the pediatric population[J].Braz J Otorhinolaryngol,2018,84(5):599-607.
-
[24] KHALYFA A,CAPDEVILA O S,BUAZZA M O,et al.Genome-wide gene expression profiling in children with non-obese obstructive sleep apnea[J].Sleep Med,2009,10(1):75-86.
-
[25] KHALYFA A,GHARIB S A,KIM J,et al.Transcriptomic analysis identifies phosphatases as novel targets for adenotonsillar hypertrophy of pediatric obstructive sleep apnea[J].Am J Respir Crit Care Med,2010,181(10):1114-1120.
-
[26] BOYAKA P N,WRIGHT P F,MARINARO M,et al.Human nasopharyngeal-associated lymphoreticular tissues.Functional analysis of subepithelial and intraepithelial B and T cells from adenoids and tonsils[J].Am J Pathol,2000,157(6):2023-2035.
-
[27] BIELUCH V M,MARTIN E T,CHASIN W D,et al.Recurrent tonsillitis:Histologic and bacteriologic evaluation [J].Ann Otol Rhinol Laryngol,1989,98(5 Pt 1):332-335.
-
[28] CYSTER J G,ALLEN C.B cell responses:Cell interaction dynamics and decisions[J].Cell,2019,177(3):524-540.
-
[29] VAN KEMPEN M J,RIJKERS G T,VAN CAUWEN‐BERGE P B.The immune response in adenoids and tonsils[J].Int Arch Allergy Immunol,2000,122(1):8-19.
-
[30] SADE K,FISHMAN G,KIVITY S,et al.Expression of Th17 and Treg lymphocyte subsets in hypertrophied adenoids of children and its clinical significance[J].Immunol Invest,2011,40(6):657-666.
-
[31] MUSIATOWIWCZ M,KODA M,SULKOWSKI S.The TIMP-1 expression in germinal centers of hypertrophied adenoids in children[J].Int J Pediatr Otorhinolaryngol,2013,77(3):384-388.
-
[32] RATOMSKI K,WYSOCKA J,HASSMANN-POZNAŃSKA E,et al.Expression of receptor CD23+ on B lymphocytes in hypertrophied adenoids of children with otitis media with effusion[J].Otolaryngol Pol,2005,59(2):219-223.
-
[33] ÖNAL M,YILMAZ T,BILGIÇ E,et al.Apoptosis in chronic tonsillitis and tonsillar hypertrophy[J].Int J Pediatr Otorhinolaryngol,2015,79(2):191-195.
-
[34] ZHANG P C,PANG Y T,LOH K S,et al.Comparison of histology between recurrent tonsillitis and tonsillar hypertrophy[J].Clin Otolaryngol Allied Sci,2003,28(3):235-239.
-
[35] ALATAS N,BABA F.Proliferating active cells,lymphocyte subsets,and dendritic cells in recurrent tonsillitis:Their effecton hypertrophy[J].Arch Otolaryngol Head Neck Surg,2008,134(5):477-483.
-
[36] SARMIENTO VARON L,DE ROSA J,MACHICOTE A,et al.Characterization of tonsillar IL10 secreting B cells and their role in the pathophysiology of tonsillar hypertrophy [J].Sci Rep,2017,7(1):11077.
-
[37] DAN J M,HAVENAR-DAUGHTON C,KENDRIC K,et al.Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant TFH cells[J].Sci Transl Med,2019,11(478):e3776.
-
[38] FELDMAN S,KASJANSKI R,POPOSKI J,et al.Chronic airway inflammation provides a unique environment for B cell activation and antibody production[J].Clin Exp Allergy,2017,47(4):457-466.
-
[39] KUROSAKI T,SHINOHARA H,BABA Y.B cell signaling and fate decision[J].Annu Rev Immunol,2010,28:21-55.
-
[40] AKKAYA M,KWAK K,PIERCE S K.B cell memory:Building two walls of protection against pathogens[J].Nat Rev Immunol,2020,20(4):229-238.
-
[41] SCHAMEL W W,RETH M.Monomeric and oligomeric complexes of the B cell antigen receptor[J].Immunity,2000,13(1):5-14.
-
[42] TOLAR P,SOHN H W,PIERCE S K.The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer [J].Nat Immunol,2005,6(11):1168-1176.
-
[43] MONROE J G.ITAM-mediated tonic signalling through pre-BCR and BCR complexes[J].Nat Rev Immunol,2006,6(4):283-294.
-
[44] SCHNEIDER P,TSCHOPP J.BAFF and the regulation of B cell survival[J].Immunol Lett,2003,88(1):57-62.
-
[45] SIEBENLIST U,BROWN K,CLAUDIO E.Control of lymphocyte development by nuclear factor-kappaB[J].Nat Rev Immunol,2005,5(6):435-445.
-
[46] NG L G,MACKAY C R,MACKAY F.The BAFF/APRIL system:Life beyond B lymphocytes[J].Mol Immunol,2005,42(7):763-772.
-
[47] SCHWEIGHOFFER E,VANES L,NYS J,et al.The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway[J].Immunity,2013,38(3):475-488.
-
[48] DAVEY A,LIU W,SOHN H W,et al.Understanding the initiation of B cell signaling through live cell imaging[J].Methods Enzymol,2012,506:265-290.
-
[49] CANCRO M P.Signalling crosstalk in B cells:Managing worth and need[J].Nat Rev Immunol,2009,9(9):657-661.
-
[50] BENSCHOP R J,AVISZUS K,ZHANG X,et al.Activation and anergy in bone marrow B cells of a novel immunoglobulin transgenic mouse that is both hapten specific and autoreactive[J].Immunity,2001,14(1):33-43.
-
[51] RETH M,WIENANDS J,TSUBATA T,et al.Identification of components of the B cell antigen receptor complex[J].Adv Exp Med Biol,1991,292:207-214.
-
[52] DAL PORTO J M,GAULD S B,MERRELL K T,et al.B cell antigen receptor signaling 101[J].Mol Immunol,2004,41(6-7):599-613.
-
[53] DEFRANCO A L.The complexity of signaling pathways activated by the BCR[J].Curr Opin Immunol,1997,9(3):296-308.
-
[54] WANG Y,BROOKS S R,LI X,et al.The physiologic role of CD19 cytoplasmic tyrosines[J].Immunity,2002,17(4):501-514.
-
[55] JUSTEMENT L B.The role of the protein tyrosine phosphatase CD45 in regulation of B lymphocyte activation[J].Int Rev Immunol,2001,20(6):713-738.
-
[56] HARWOOD N E,BATISTA F D.Early events in B cell activation[J].Annu Rev Immunol,2010,28:185-210.
-
[57] METZGER H.Transmembrane signaling:The joy of aggregation[J].J Immunol,1992,149(5):1477-1487.
-
[58] LIU W,MECKEL T,TOLAR P,et al.Antigen affinity discrimination is an intrinsic function of the B cell receptor[J].J Exp Med,2010,207(5):1095-1111.
-
[59] TREANOR B,DEPOIL D,BRUCKBAUER A,et al.Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity[J].J Exp Med,2011,208(5):1055-1068.
-
[60] KUROSAKI T,AIBA Y,KOMETANI K,et al.Unique properties of memory B cells of different isotypes[J].Immunol Rev,2010,237(1):104-116.
-
[61] LIU W,MECKEL T,TOLAR P,et al.Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling[J].Immunity,2010,32(6):778-789.
-
[62] MARTIN S W,GOODNOW C C.Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory[J].Nat Immunol,2002,3(2):182-188.
-
[63] CHEN X,PAN W,SUI Y,et al.Acidic phospholipids govern the enhanced activation of IgG-B cell receptor[J].Nat Commun,2015,6:8552.
-
[64] XU Y,XU L,ZHAO M,et al.No receptor stands alone:IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory[J].Cell Res,2014,24(6):651-664.
-
[65] KAISHO T,SCHWENK F,RAJEWSKY K.The roles of gamma 1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses[J].Science,1997,276(5311):412-415.
-
[66] ENGELS N,KÖNIG L M,SCHULZE W,et al.The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module[J].Nat Commun,2014,5:5456.
-
[67] RETH M.Antigen receptor tail clue[J].Nature,1989,338(6214):383-384.
-
[68] KUROSAKI T.Functional dissection of BCR signaling pathways[J].Curr Opin Immunol,2000,12(3):276-281.
-
[69] FLASWINKEL H,RETH M.Dual role of the tyrosine activation motif of the Ig-alpha protein during signal transduction via the B cell antigen receptor[J].EMBO J,1994,13(1):83-89.
-
[70] ENGELS N,KÖNIG L M,HEEMANN C,et al.Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells[J].Nat Immunol,2009,10(9):1018-1025.
-
[71] SHIH T A,MEFFRE E,ROEDERER M,et al.Role of BCR affinity in T cell dependent antibody responses in vivo[J].Nat Immunol,2002,3(6):570-575.
-
[72] WAN Z,CHEN X,CHEN H,et al.The activation of IgMor isotype-switched IgGand IgE-BCR exhibits distinct mechanical force sensitivity and threshold[J].Elife,2015,4:e06925.
-
[73] WAN Z,XU C,CHEN X,et al.PI(4,5)P2 determines the threshold of mechanical force-induced B cell activation [J].J Cell Biol,2018,217(7):2565-2582.
-
[74] SAITO K,SCHARENBERG A M,KINET J P.Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk[J].J Biol Chem,2001,276(19):16201-16206.
-
[75] KANG S W,WAHL M I,CHU J,et al.PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization[J].EMBO J,2001,20(20):5692-5702.
-
[76] AIBA Y,OH-HORA M,KIYONAKA S,et al.Activation of RasGRP3 by phosphorylation of Thr-133 is required for B cell receptor-mediated Ras activation[J].Proc Natl Acad Sci USA,2004,101(47):16612-16617.
-
[77] CHIU C W,DALTON M,ISHIAI M,et al.BLNK:Molecular scaffolding through 'cis'-mediated organization of signaling proteins[J].EMBO J,2002,21(23):6461-6472.
-
[78] D'AMBROSIO D,HIPPEN K L,CAMBIER J C.Distinct mechanisms mediate SHC association with the activated and resting B cell antigen receptor[J].Eur J Immunol,1996,26(8):1960-1965.
-
[79] SUN W,ZHU C,LI Y,et al.B cell activation and autoantibody production in autoimmune diseases[J].Best Pract Res Clin Rheumatol,2024:101936.
-
[80] CHEN X,SUN X,YANG W,et al.An autoimmune disease variant of IgG1 modulates B cell activation and differentiation[J].Science,2018,362(6415):700-705.
-
[81] YANG B,ZHANG Z,CHEN X,et al.An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment[J].J Clin Invest,2022,132(6):e153454.
-
[82] FLOTO R A,CLATWORTHY M R,HEILBRONN K R,et al.Loss of function of a lupus-associated FcgammaRⅡb polymorphism through exclusion from lipid rafts[J].Nat Med,2005,11(10):1056-1058.
-
[83] LIU W,WON SOHN H,TOLAR P,et al.Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RⅡB inhibition[J].J Immunol,2010,184(4):1977-1989.
-
[84] XU L,LI G,WANG J,et al.Through an ITIM-independent mechanism the FcγRⅡB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19[J].J Immunol,2014,192(11):5179-5191.
-
摘要
B细胞通过其表面分布的 B细胞受体 (BCR) 识别外界抗原,是机体产生保护性抗体与免疫记忆的关键步骤。 B细胞免疫活化调控与诸多上呼吸道疾病是密切相关的。儿童常见疾病腺样体扁桃体肥大 (ATH),其特征性病理本质为淋巴滤泡的增生,但其确切机制尚未明确。本文综述静息态下维持B细胞存活的BCR滋养信号研究,阐述了B细胞免疫活化及产生快速高效免疫记忆的调控机制,尤其是活化早期分子事件,强调mIgG-tail对记忆性抗体应答的相关作用。B细胞活化调控过程出现异常可破坏免疫稳态平衡,导致疾病的发生。本文总结了B细胞免疫活化调控与ATH的机制关联,尝试探讨信号转导通路失调或突变对ATH的可能影响。旨在深入理解ATH的致病机理,以期挖掘潜在研究突破口,寻找ATH新的诊疗靶点。
Abstract
B cells play a crucial role in recognizing external antigens through their surface B cell receptor (BCR), essential for generating protective antibodies and immune memory. Regulation of B cell immuneactivation is closely linked to various upper respiratory tract diseases. Adenoid hypertrophy (ATH), a common childhood condition, is characterized by lymphoid follicular hyperplasia, yet its exact mechanisms remain elusive. This review consolidates research on BCR trophic signaling that sustains B cell viability in resting state. It clarifies the regulatory mechanisms governing B cell immune activation and the establishment of rapid, effective immune memory, with a specific focus on early molecular activation events and the pivotal role of mIgG-tail in memory antibody responses. Dysregulation of B cell activation processes can disrupt immune balance, potentially precipitating disease. This synthesis explores the connection between regulation of B cell activation and ATH pathogenesis, examining the potential impacts of signaling pathway dysregulation or mutations on ATH. The review aims to enhance understanding of the disease mechanisms underlying ATH, with the goal of identifying new diagnostic and therapeutic targets for this condition.