en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

魏海明(1963-),男,安徽合肥人,教授,主要从事肿瘤免疫和生殖免疫方面的研究,E-mail:ustcwhm@ustc.edu.cn

中图分类号:R392.12

文献标识码:A

文章编号:2096-8965(2024)02-0072-09

DOI:10.12287/j.issn.2096-8965.20240209

参考文献 1
GELLERSEN B,BROSENS J J.Cyclic decidualization of the human endometrium in reproductive health and failure[J].Endocrine Reviews,2014,35(6):851-905.
参考文献 2
ERLEBACHER A.Immunology of the maternal-fetal interface[J].Annu Rev Immunol,2013,31(1):387-411.
参考文献 3
ANDER S E,DIAMOND M S,COYNE C B.Immune responses at the maternal-fetal interface[J].Sci Immunol,2019,4(31):eaat6114.
参考文献 4
XU Y Y,WANG S C,LI D J,et al.Co-signaling molecules in maternal-fetal immunity[J].Trends in Molecular Medicine,2017,23(1):46-58.
参考文献 5
VACCA P,VITALE C,MONTALDO E,et al.CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J].Proc Natl Acad Sci USA,2011,108(6):2402-2407.
参考文献 6
SOJKA D K,YANG L,PLOUGASTEL-DOUGLAS B,et al.Cutting edge:Local proliferation of uterine tissueresident NK cells during decidualization in mice[J].The Journal of Immunology,2018,201(9):2551-2556.
参考文献 7
HAN M,HU L,WU D,et al.IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy[J].Nat Commun,2023,14(1):7109.
参考文献 8
KESKIN D B,ALLAN D S J,RYBALOV B,et al.TGFβ promotes conversion of CD16 + peripheral blood NK cells into CD16NK cells with similarities to decidual NK cells [J].Proc Natl Acad Sci USA,2007,104(9):3378-3383.
参考文献 9
CERDEIRA A S,RAJAKUMAR A,ROYLE C M,et al.Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors[J].The Journal of Immunology,2013,190(8):3939-3948.
参考文献 10
STRUNZ B,BISTER J,JÖNSSON H,et al.Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy[J].Sci Immunol,2021,6(56):eabb7800.
参考文献 11
XU W,CHERRIER D E,CHEA S,et al.An Id2RFPreporter mouse redefines innate lymphoid cell precursor potentials[J].Immunity,2019,50(4):1054-1068.e3.
参考文献 12
CRINIER A,NARNI-MANCINELLI E,UGOLINI S,et al.SnapShot:Natural killer cells[J].Cell,2020,180(6):1280-1281.
参考文献 13
FU B,WANG F,SUN R,et al.CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells[J].Immunology,2011,133(3):350-359.
参考文献 14
FU B,ZHOU Y,NI X,et al.Natural killer cells promote fetal development through the secretion of growth-promoting factors[J].Immunity,2017,47(6):1100-1113.e6.
参考文献 15
FU B,LI X,SUN R,et al.Natural killer cells promote immune tolerance by regulating inflammatory Th17 cells at the human maternal-fetal interface[J].Proc Natl Acad Sci USA,2013,110(3).
参考文献 16
NI F,SUN R,FU B,et al.IGF-1 promotes the development and cytotoxic activity of human NK cells[J].Nature Communications,2013,1479:4.
参考文献 17
VENTO-TORMO R,EFREMOVA M,BOTTING R A,et al.Single-cell reconstruction of the early maternal–fetal interface in humans[J].Nature,2018,563(7731):347-353.
参考文献 18
KOPCOW H D,ALLAN D S J,CHEN X,et al.Human decidual NK cells form immature activating synapses and are not cytotoxic[J].Proc Natl Acad Sci USA,2005,102(43):15563-15568.
参考文献 19
PAZMANY L,MANDELBOIM O,VALÉS-GÓMEZ M,et al.Protection from natural killer cell-mediated lysis by HLA-G expression on target cells[J].Science,1996,274(5288):792-795.
参考文献 20
TILBURGS T,EVANS J H,CRESPO Â C,et al.The HLAG cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J].Proc Natl Acad Sci USA,2015,112(43):13312-13317.
参考文献 21
LI Y H,ZHOU W H,TAO Y,et al.The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J].Cell Mol Immunol,2016,13(1):73-81.
参考文献 22
KALKUNTE S S,MSELLE T F,NORRIS W E,et al.Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface[J].J Immunol,2009,182(7):4085-4092.
参考文献 23
VACCA P,CANTONI C,VITALE M,et al.Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression[J].Proc Natl Acad Sci USA,2010,107(26):11918-11923.
参考文献 24
TAO Y,LI Y H,ZHANG D,et al.Decidual CXCR4+ CD56bright NK cells as a novel NK subset in maternalfoetal immune tolerance to alleviate early pregnancy failure [J].Clin Transl Med,2021,11(10):e540.
参考文献 25
KAM E P,GARDNER L,LOKE Y W,et al.The role of trophoblast in the physiological change in decidual spiral arteries[J].Hum Reprod,1999,14(8):2131-2138.
参考文献 26
SMITH S D,DUNK C E,APLIN J D,et al.Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy[J].Am J Pathol,2009,174(5):1959-1971.
参考文献 27
KHONG T Y,DE WOLF F,ROBERTSON W B,et al.Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by smallfor gestational age infants[J].Br J Obstet Gynaecol,1986,93(10):1049-1059.
参考文献 28
YOUNG B C,LEVINE R J,KARUMANCHI S A.Pathogenesis of preeclampsia[J].Annu Rev Pathol,2010,5:173-192.
参考文献 29
ROBSON A,HARRIS L K,INNES B A,et al.Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J].FASEB J,2012,26(12):4876-4885.
参考文献 30
HANNA J,GOLDMAN-WOHL D,HAMANI Y,et al.Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J].Nat Med,2006,12(9):1065-1074.
参考文献 31
HUPPERTZ B.Traditional and new routes of trophoblast invasion and their implications for pregnancy diseases[J].Int J Mol Sci,2019,21(1):289.
参考文献 32
CHAZARA O,XIONG S,MOFFETT A.Maternal KIR and fetal HLA-C:A fine balance[J].J Leukoc Biol,2011,90(4):703-716.
参考文献 33
LASH G E,OTUN H A,INNES B A,et al.Interferongamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels[J].FASEB J,2006,20(14):2512-2518.
参考文献 34
OTUN H A,LASH G E,INNES B A,et al.Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion[J].Journal of Reproductive Immunology,2011,88(1):1-11.
参考文献 35
RAJAGOPALAN S,BRYCESON Y T,KUPPUSAMY S P,et al.Activation of NK cells by an endocytosed receptor for soluble HLA-G[J].PLoS Biol,2006,4(1):e9.
参考文献 36
LI Q,SHARKEY A,SHERIDAN M,et al.Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy[J].Cell Stem Cell,2024,31(2):181-195.e9.
参考文献 37
ZHOU Y,FU B,XU X,et al.PBX1 expression in uterine natural killer cells drives fetal growth[J].Sci Transl Med,2020,12(537):eaax1798.
参考文献 38
NETEA M G,DOMÍNGUEZ-ANDRÉS J,BARREIRO L B,et al.Defining trained immunity and its role in health and disease[J].Nat Rev Immunol,2020,20(6):375-388.
参考文献 39
GAMLIEL M,GOLDMAN-WOHL D,ISAACSON B,et al.Trained memory of human uterine NK cells enhances their function in subsequent pregnancies[J].Immunity,2018,48(5):951-962.e5.
参考文献 40
DIMITRIADIS E,MENKHORST E,SAITO S,et al.Recurrent pregnancy loss[J].Nat Rev Dis Primers,2020,6(1):98.
参考文献 41
BAEK K H,LEE E J,KIM Y S.Recurrent pregnancy loss:The key potential mechanisms[J].Trends Mol Med,2007,13(7):310-317.
参考文献 42
EL-AZZAMY H,DAMBAEVA S V,KATUKURUND‐ AGE D,et al.Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses[J].Am J Reprod Immunol,2018,80(4):e13024.
参考文献 43
LI H,HOU Y,ZHANG S,et al.CD49a regulates the function of human decidual natural killer cells[J].Am J Reprod Immunol,2019,81(4):e13101.
参考文献 44
LU H,YANG H L,ZHOU W J,et al.Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence[J].Autophagy,2021,17(9):2511-2527.
参考文献 45
J ESPINOZA,A VIDAEFF,C PETTKER,et al.Gesta-tional hypertension and preeclampsia:ACOG practice bulletin,number 222[J].Obstet Gynecol,2020,135(6):1492-1495.
参考文献 46
JUNG E,ROMERO R,YEO L,et al.The etiology of preeclampsia[J].American Journal of Obstetrics and Gynecology,2022,226(2):S844-S866.
参考文献 47
MCMASTER M T,ZHOU Y,FISHER S J.Abnormal placentation and the syndrome of preeclampsia[J].Seminars in Nephrology,2004,24(6):540-547.
参考文献 48
ZHOU Y,DAMSKY C H,CHIU K,et al.Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts[J].J Clin Invest,1993,91(3):950-960.
参考文献 49
OPICHKA M A,RAPPELT M W,GUTTERMAN D D,et al.Vascular dysfunction in preeclampsia[J].Cells,2021,10(11):3055.
参考文献 50
DEER E,HERROCK O,CAMPBELL N,et al.The role of immune cells and mediators in preeclampsia[J].Nat Rev Nephrol,2023,19(4):257-270.
参考文献 51
SHREEVE N,DEPIERREUX D,HAWKES D,et al.The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice [J].Immunity,2021,54(6):1231-1244.e4.
参考文献 52
ZHANG J,DUNK C E,SHYNLOVA O,et al.TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia[J].EBioMedicine,2019,39:531-539.
参考文献 53
WEDENOJA S,YOSHIHARA M,TEDER H,et al.Fetal HLA-G mediated immune tolerance and interferon response in preeclampsia[J].EBioMedicine,2020,59:102872.
参考文献 54
HIBY S E,WALKER J J,O'SHAUGHNESSY K M,et al.Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success [J].J Exp Med,2004,200(8):957-965.
参考文献 55
XIE J,LI L,XING H.Metabolomics in gestational diabetes mellitus:A review[J].Clin Chim Acta,2023,539:134-143.
参考文献 56
MOON J H,JANG H C.Gestational diabetes mellitus:Diagnostic approaches and maternal-offspring complications [J].Diabetes Metab J,2022,46(1):3-14.
参考文献 57
ACOG Practice Bulletin No.190:Gestational diabetes mellitus[J].Obstet Gynecol,2018,131(2):e49-e64.
参考文献 58
XIONG Y,WANG Y,WU M,et al.Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction[J].Front Immunol,2024,15:1346231.
参考文献 59
ARORA N,SADOVSKY Y,DERMODY T S,et al.Microbial vertical transmission during human pregnancy [J].Cell Host Microbe,2017,21(5):561-567.
参考文献 60
KOOPMANS M M,BROUWER M C,VÁZQUEZBOLAND J A,et al.Human listeriosis[J].Clin Microbiol Rev,2023,36(1):e0006019.
参考文献 61
CRESPO Â C,MULIK S,DOTIWALA F,et al.Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts[J].Cell,2020,182(5):1125-1139.e18.
参考文献 62
FANG X,ZHOU Y,CHEN S,et al.Natural killer cells promote intra-cellular-infected trophoblasts survival via APOD-LRP1 axis[J].Immunology,2023,13621:1-15.
参考文献 63
BUXMANN H,HAMPRECHT K,MEYER-WITTKOPF M,et al.Primary human cytomegalovirus(HCMV)infection in pregnancy[J].Dtsch Arztebl Int,2017,114(4):45-52.
参考文献 64
WEISBLUM Y,PANET A,ZAKAY-RONES Z,et al.Modeling of human cytomegalovirus maternal-fetal trans‐ mission in a novel decidual organ culture[J].J Virol,2011,85(24):13204-13213.
参考文献 65
SIEWIERA J,EL COSTA H,TABIASCO J,et al.Human cytomegalovirus infection elicits new decidual natural killer cell effector functions[J].PLoS Pathog,2013,9(4):e1003257.
参考文献 66
CRESPO Â C,STROMINGER J L,TILBURGS T.Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection [J].Proc Natl Acad Sci USA,2016,113(52):15072-15077.
参考文献 67
DE MENDONÇA VIEIRA R,MEAGHER A,CRESPO Â C,et al.Human term pregnancy decidual NK cells generate distinct cytotoxic responses[J].J Immunol,2020,204(12):3149-3159.
参考文献 68
DOUDOU Y,RENAUD P,CORALIE L,et al.Toxoplasmosis among pregnant women:High seroprevalence and risk factors in Kinshasa,Democratic Republic of Congo [J].Asian Pac J Trop Biomed,2014,4(1):69-74.
参考文献 69
YAROVINSKY F.Innate immunity to Toxoplasma gondii infection[J].Nat Rev Immunol,2014,14(2):109-121.
参考文献 70
LI T,CUI L,XU X,et al.The role of Tim-3 on dNK cells dysfunction during abnormal pregnancy with toxoplasma gondii infection[J].Front Cell Infect Microbiol,2021,11:587150.
参考文献 71
XU X,ZHENG G,REN Y,et al.A novel 2B4 receptor leads to worse pregnancy outcomes by facilitating TNF-α and IFN-γ production in dNK cells during Toxoplasma gondii infection[J].Parasites Vectors,2022,15(1):337.
参考文献 72
ZHANG F,SUN W,ZHAO J,et al.Toxoplasma gondii causes adverse pregnancy outcomes by damaging uterine tissue-resident NK cells that secrete growth-promoting factors[J].The Journal of Infectious Diseases,2024,229(2):547-557.
参考文献 73
LIU X,ZHAO M,YANG X,et al.Toxoplasma gondii infection of decidual CD1c+ dendritic cells enhances cytotoxicity of decidual natural killer cells[J].Inflammation,2014,37(4):1261-1270.
参考文献 74
XU X,ZHANG J,ZHAN S,et al.TGF-β1 improving abnormal pregnancy outcomes induced by Toxoplasma gondii infection:Regulating NKG2D/DAP10 and killer subset of decidual NK cells[J].Cellular Immunology,2017,317:9-17.
参考文献 75
DU X,ZHU H,JIAO D,et al.Human-induced CD49a+ NK cells promote fetal growth[J].Front Immunol,2022,13:821542.
参考文献 76
TONG X,GAO M,DU X,et al.Analysis of uterine CD49a+ NK cell subsets in menstrual blood reflects endometrial status and association with recurrent spontaneous abortion[J].Cell Mol Immunol,2021,18(7):1838-1840.
目录contents

    摘要

    蜕膜作为一种妊娠时特化的子宫内膜,在促进胚胎生长和维持免疫耐受方面起到至关重要作用。研究表明,蜕膜组织中富集以自然杀伤NK细胞和巨噬细胞为主的大量免疫细胞。在正常妊娠时,各种免疫细胞或非免疫细胞互相调节使母胎界面整体处于免疫平衡状态,而一旦该免疫平衡被打破则可能导致各种妊娠疾病,例如复发性自然流产、子痫前期和胚胎宫内生长受限等。本综述重点总结了妊娠前3个月蜕膜NK细胞的来源、亚群、生理功能和病理作用。

    Abstract

    The decidua, a specialized endometrium during pregnancy, plays a crucial role in promoting embryonic growth and maintaining immune tolerance. Recent research shows that decidual tissue is enriched with a large number of immune cells, primarily natural killer (NK) cells and macrophages. During normal pregnancy, various immune and non-immune cells regulate each other to maintain an overall immune balance at the maternalfetal interface. Disruption of this immune balance can lead to various pregnancy-related complications, such as recurrent spontaneous abortion, preeclampsia, and intrauterine growth restriction. This review highlights the sources, subsets, physiological functions, and pathological roles of decidual NK cells during the first trimester of pregnancy.

  • 0 前言

  • 蜕膜化是指子宫内膜基质成纤维细胞转化为特化的分泌性蜕膜细胞的过程,这些细胞对胚胎着床和胎盘发育至关重要。人类子宫内膜的蜕膜化过程是由排卵后孕酮水平的升高和局部cAMP产生增加驱动的,而不需要胚胎着床[1]。母体蜕膜组织和胚胎滋养层细胞共同组成了母胎界面,在该界面中存在着大量的免疫细胞 (约占蜕膜细胞总数的40%)。在妊娠前 3 个月,自然杀伤 (Natural Killer,NK) 细胞是主要的免疫细胞亚群,约占总免疫细胞数量 70%,巨噬细胞为第二大免疫细胞亚群,约占总免疫细胞数量 20%,T细胞约占比 10%,此外还存在极少量的树突状细胞 (Dendritic Cell,DC)、B 细胞和中性粒细胞等[2]。母体如何在如此大量的免疫细胞尤其是 NK细胞存在的情况下,维持基因半相合的胎儿不被免疫排斥,是一个十分重要且复杂的科学问题。此前的研究表明,蜕膜 NK 细胞 (decidual Natural Killer,dNK) 可与蜕膜基质细胞或其余类型的免疫细胞相互作用[3],通过不同的机制维持免疫耐受以支持正常妊娠[4],当该免疫平衡被打破时则会导致各种妊娠相关疾病。此外,dNK 细胞在对抗妊娠期不同病原微生物的感染中也起到至关重要的作用。

  • 1 dNK细胞的来源

  • NK 细胞是人妊娠早期蜕膜组织中含量最丰富的免疫细胞,约占蜕膜免疫细胞总数的70%。目前科学界对于 dNK 细胞的来源尚未达成共识,不同的实验证据表明,dNK细胞的来源可能是多样的。

  • 一种观点认为,dNK细胞是由蜕膜中一群独特的 CD34+ 造血细胞前体分化而来[5]。与脐血和外周血中的 CD34+ 细胞不同,蜕膜 CD34+ 细胞高表达 CD122、核因子白细胞介素-3 调节因子 (Nuclear Factor Interleukin-3 Regulated Factor,NFIL3) 和DNA 结合抑制因子2(Inhibitor of DNA Binding2,ID2),暗示其向 NK细胞谱系分化。在生长因子或蜕膜基质细胞存在的情况下,蜕膜CD34+ 细胞能够分化为 CD56bright CD16- KIR+/- 表型且能够产生 IL-8 和 IL-22 的功能性类dNK细胞。

  • 另一种观点认为,dNK细胞由子宫中的组织居留 NK 细胞 (tissue resident NK,trNK) 扩增产生。 Sojka等[6] 利用了一种巧妙的 NK细胞荧光报告小鼠追踪妊娠期间 dNK 细胞的来源。小鼠连体共生实验表明,虽然传统 NK 细胞 (conventional NK, cNK) 和 trNK 细胞在蜕膜组织中均有积累,但仅有 trNK 细胞发生了增殖,而 cNK 细胞并没有发生增殖和迁移,并且 trNK 细胞不会重新参与循环。近期的研究表明,IL-21R-STAT3 信号轴能够启动 trNK细胞的增殖分化[7]。通过在妊娠早期对小鼠静脉注射抗 CD45 抗体,排除了外周 NK 细胞迁移引起 dNK 细胞数量增加的可能性。这些结果表明, dNK细胞可能是由trNK细胞增殖来的。

  • 还有一种观点认为,蜕膜化发生的过程中,外周血NK细胞 (peripheral Blood NK,pNK) 迁移到子宫,并在子宫微环境的诱导下获得了dNK细胞的表型。转化生长因子 (Transforming Growth Factorβ,TGF-β) 能够将 pNK 细胞诱导为与 dNK 细胞表型功能类似的蜕膜样细胞[8],进一步研究表明, TGF-β、去甲基化试剂和低氧条件的联合诱导[9] 能够使pNK细胞呈现更加类似dNK细胞的表型。Strunz 等[10] 利用了罕见的子宫移植后成功妊娠的妇女的子宫内膜和外周血样本为这一观点提供了有力证据。通过染色体检测特异性HLA分子的表达,能够很好地区分移植后子宫中的细胞是来自供体还是受体。检测发现,移植子宫中几乎所有的 NK细胞均源自受体本身。这表明子宫 NK细胞是从循环中重新补充的,并且尽管这些细胞表达组织居留标志物,但可能只代表一种暂时性的组织居留细胞群。

  • 2 dNK细胞的亚群

  • 利用 CD27 和 CD11b 的表达情况区分 NK 细胞的不同发育阶段是目前较为公认的划分方法。在小鼠中,转录因子 T-bet、Id2 和 NFIL3 使 NK 细胞祖细胞 (NK Progenitor,NKP) 得到维持和发育[11],之后 CD122 的表达使 NKP 细胞转化为精细化 NK 细胞祖细胞 (refined NKP,rNKP),rNKP 细胞能够分化成为未成熟的 CD27+ CD11b-NK细胞,并表达活化性受体 NK1.1、NKG2D 和 NKp46,这群细胞进一步分化为 CD27+ CD11b+ NK 细胞,并表达鞘氨醇-1-磷酸受体 5 (Sphingosine-1-Phosphate Receptor 5,S1P5),使其能够从骨髓向外周转移。成熟的 CD27- CD11b+ NK 细胞通过表达杀伤细胞凝集素样受体 G1 (Killer Cell Lectin Like Receptor G1,KLRG1) 而终止分化[12]

  • 研究表明,几乎所有 pNK 细胞都呈现 CD27- CD11b+ 表型 (占90%以上),而妊娠早期的dNK则大部分呈现 CD27- CD11b表型 (约占 70%),另有少量的CD27+ CD11b和CD27- CD11b+ 亚群 (各约占 10%),CD27+ CD11b+ 细胞的含量极少[13]。以上每个亚群都可以通过独特的功能和表型特征表征, CD27- CD11b- NK 细胞显示出不成熟的表型和较强分化潜能,具有促胚胎生长功能[14];CD27+ CD11b和CD27+ CD11b+ NK细胞具有较强的细胞因子分泌能力,能够通过分泌 IFN-γ 抑制炎症性 Th17 的分化[15];而 CD27- CD11b+ NK 细胞则表现出较高的细胞毒性,这群细胞能够通过下调miRNA-483促进胰岛素样生长因子 1 (Insulin-Like Growth Factor-1,IGF-1) 的分泌,和复发性流产的发生相关[16]

  • 根据单细胞测序得到的不同转录谱,dNK细胞也被划分为dNK1、dNK2和dNK3 3个亚群[17]。3个亚群均表达组织居留标志基因CD49aCD9。dNK1细胞特异性表达 CD39、CYP26A1 和 B4GALNT1,此外表达较高水平的 KIR,如抑制性受体 KIR2DL1、 KIR2DL2 和 KIR2DL3 以及激活性受体 KIR2DS1 和 KIR2DS4,能够与 EVTs 表达的 HLA-C 结合。ILT2 受体也仅由 dNK1 表达,该受体能够与 EVTs 表达的 HLA-G 结合,暗示 dNK1 细胞能够识别和响应滋养层细胞。dNK1 细胞相较其他两群细胞也更高表达细胞质颗粒物,如 GZMA、GZMB 和 GNLY。定义 dNK2 细胞的标志物是 ANXA1 和 ITGB2, dNK2 和 dNK1 细胞均表达抑制性受体 NKG2A (能够结合 HLA-E) 及活化性受体 NKG2C 和 NKG2E。 dNK2能够招募EVTs和cDC1细胞。dNK3细胞占比相对较小,以 CD160、KLRB1 CD103 等为特征性基因,但不表达固有淋巴细胞的标志 CD127。 dNK3细胞高表达CCL5,能够与滋养层细胞表达的 CCR1受体结合以调节滋养层侵袭。

  • 绝大多数dNK细胞呈现CD56brightCD16-CD49a+ 表型,展示出较低的细胞杀伤活性和较高的细胞因子分泌能力[18];另有少部分 dNK 细胞呈现与 pNK 细胞相似的 CD56dimCD16+ CD49a-表型。巨大的表型差异使dNK展示出与pNK截然不同的生理功能。

  • 3 dNK细胞的生理功能

  • 3.1 dNK细胞维持免疫耐受

  • 妊娠期间,母体必须保持对外界病原体的免疫防御,同时还要避免对胎儿的攻击,因为胎儿具有来自父本的异体抗原。这种平衡状态涉及多种免疫细胞和分子的复杂相互作用。作为妊娠早期蜕膜中数量最多的免疫细胞,dNK细胞对于维持这种免疫耐受至关重要。人类胎盘最外层不表达Ⅰ类人白细胞抗原 (HLA-A、HLA-B 和 HLA-C) 和Ⅱ类抗原 (HLA-DR、HLA-DQ 和 HLA-DP)。这样虽然可以防止被母体 T 细胞识别,但使这些细胞易受 NK 细胞攻击。

  • 研究表明,直接与母体接触的滋养层细胞表达 HLA-G,能够与 dNK 细胞表面受体 KIR2DL4 和 ILT2 结合维持免疫耐受[19]。之后的一项研究表明, NK细胞可以通过“胞啃”的方式获得HLA-G。与 EVTs细胞共培养后,约2.5%的dNK细胞表面含有 HLA-G,其余表面 HLA-G阴性的 dNK细胞中也含有内化的 HLA-G。dNK 细胞中的 HLA-G 循环能够降低 NK 细胞毒性,提高 NK 细胞的耐受性[20]。此外,T 淋巴细胞免疫球蛋白黏蛋白 3(T Cell Immunoglobulin Domain and Mucin Domain-3, Tim-3)+ dNK 细胞通过识别 Gal-9+ EVTs 细胞降低自身的细胞毒性以维持免疫耐受[21]。dNK细胞自身分泌的血管内皮生长因子C (Vascular Endothelial Growth Factor C,VEGFC) 能够诱导靶细胞的 TAP-1 表达和 MHC-Ⅰ分子的组装,使 dNK 细胞维持较低的细胞毒性[22]

  • dNK 细胞也可以通过调节 Treg/Th2 与 Th17/ Th1 维持免疫耐受。dNK 细胞能够分泌 IFN-γ 促进蜕膜 CD14+ 髓系细胞的吲哚胺 2,3-双加氧酶 1 (Indoleamine2,3-Dioxygenase1,IDO1) 的表达,从而间接诱导 Treg 细胞产生[23];CXCR4+ CD56bright dNK 细胞能产生 IL-4和 IL-10等细胞因子,直接诱导 Th2 细胞极化[24]。CD56brightCD27+ dNK 亚群能够通过分泌IFN-γ抑制炎症性Th17细胞的产生,以维持免疫耐受和正常妊娠[15]。综上所述,dNK细胞能够直接通过自身的抑制性受体如 ILT2、Tim-3等与靶细胞上的配体结合实现免疫耐受,也能够自分泌 VEGFC 等细胞因子降低自身细胞毒性,也可以通过直接或间接方式抑制 Th2 细胞或炎性 Th17 细胞的产生。

  • 3.2 dNK细胞促进螺旋动脉重塑和血管生成

  • 螺旋动脉重塑是将子宫螺旋动脉转变为高容量、低阻力的血管,并通过从胎盘迁移并侵入滋养层细胞替换这些血管内皮的过程[25]。在人类中的研究表明,螺旋动脉重塑具有两个不同的阶段。第一阶段发生在附近没有滋养层细胞的情况下,血管平滑肌细胞 (Vascular Smooth Muscle Cells,VSMCs) 被破坏,内皮发生肿胀并失去连续性,部分 VSMCs 和内皮细胞会发生凋亡。这些变化与局部 dNK 细胞和巨噬细胞的积累相关;第二阶段涉及绒毛外滋养层细胞迁移至血管腔内形成伪内皮,几乎完全失去相关的 VSMCs 和内皮细胞[26]。母体和胎儿间通过重塑后的螺旋动脉交换氧气和营养物质。胎盘灌注不足能够导致妊娠期高血压 (Hypertension In Pregnancy,HIP) 和胎儿生长受限 (Fetal Growth Restriction,FGR) [27],可能会对母婴双方产生致命后果[28]

  • 妊娠早期 dNK 细胞的培养上清能够诱导分娩后胎盘的绒毛膜血管和未妊娠子宫肌层螺旋动脉的 VSMCs 和胞外基质成分的破坏。血管生成素 1 (Ang-1)、Ang-2、IFN-γ 和 VEGFC 及基质金属蛋白酶 (Matrix Metalloproteinase,MMP) 是其中关键的效应分子,即 dNK 细胞是早期螺旋动脉重塑的启动者[29]。此外,dNK细胞通过分泌血管生长因子和胎盘生长因子促进血管生成[22],也使得dNK细胞有较强的促肿瘤功能[30]

  • 3.3 dNK细胞控制滋养层细胞的侵袭和分化

  • 滋养层细胞适当地侵袭对于正常妊娠的维持至关重要。滋养层细胞侵袭程度过浅,可导致 HIP、子痫前期 (Preeclampsia,PE) 和 FGR 等多种妊娠疾病[27];滋养层细胞过度侵袭使胎盘绒毛穿入部分宫壁肌层,可导致更加危险的胎盘植入,进而引发产妇大出血[31]。dNK 细胞能够调节滋养层细胞的适度侵袭。NK 细胞上的免疫球蛋白样受体 (Killer cell Immunoglobulin-like Receptors, KIRs) 能够与绒毛外滋养层细胞 (Extravillous Trophoblast Cells,EVTs) 上的 HLA-C 分子结合,而这一结合能够控制 EVTs 细胞的侵袭程度[32]。dNK 细胞分泌的 IFN-γ和 TNF-α能够诱导滋养层细胞的凋亡以防止其过度侵袭[33-34]。dNK 细胞还能够分泌趋化因子 CXCL8 和 CXCL10 以促进滋养层细胞向蜕膜组织的迁移[30],这一过程是由滋养层细胞的 HLA-G 与 dNK细胞的KIR2DL4结合所启动的[35]

  • 近期的一项研究确定了 XCL1、CSF2、CSF1 和 CCL5这 4个 dNK 细胞特异性的细胞因子能够通过调节上皮-间质转化、细胞融合和细胞侵袭等基因通路促进 EVTs 的分化[36]。因此,dNK 细胞既能通过受配体相互作用或分泌细胞因子控制滋养层细胞的适度侵袭,也能够通过特定的细胞因子组合促进滋养层细胞的分化。

  • 3.4 dNK细胞促进胚胎发育

  • CD49a+ Eomes+ 的 dNK 细胞能够分泌大量不同类型的促生长因子,如多效生长因子 (Pleiotrophin,PTN)、骨多糖 (Osteoglycin,OGN) 和骨桥蛋白 (Osteopontin,OPN) 等,而 pNK 细胞不分泌或极少分泌这些因子。将 dNK细胞与 EVTs细胞或转入不同HLA分子的721.221细胞进行共孵育实验,证明了EVTs所表达的HLA-G能够与dNK细胞表面 Ig 样转录因子 2(Ig-Like Transcript 2,ILT2) 相互作用,诱导 dNK 胞内生长因子 PTN、OGN 和 OPN 的表达。在 NFIL3 敲除小鼠模型中表现出分泌生长因子的 dNK 细胞比例降低,同时其子代出现了严重的 FGR 和骨组织发育迟缓现象[14]。进一步探究发现,转录因子前 B 细胞白血病转录因子 1 (Pre-B-Cell Leukemia Homeobox Transcription Factor 1, PBX1) 是HLA-G和ILT2互作后下游的关键转录因子。HLA-G 与 ILT2 结合后,通过 PI3K-AKT 信号通路上调 dNK 细胞 PBX1 的表达,而 PBX1 能够直接结合生长因子基因的启动子促进 PTN 和 OGN 的表达。NK 细胞特异性敲除 PBX1 小鼠的子代出现了与 NFIL3 敲除小鼠子代类似的 FGR 和骨发育迟缓现象[37]。综上,在妊娠早期胎盘尚未形成时,分泌促生长因子的 dNK 细胞起到了供给胚胎养分以促进胚胎生长发育的作用。

  • 3.5 dNK细胞支持再次妊娠

  • 长期以来,是否具有免疫记忆都被视作区分天然免疫应答和适应性免疫应答的关键因素。然而,最近的一些研究表明,dNK细胞同样可以表现出记忆样特征。这种天然免疫细胞在受到二次刺激时被快速激活,展现出记忆样细胞特征的现象也被称作训练免疫[38]。Gamliel 等[39] 的研究表明 dNK 细胞存在记忆功能,并且这种记忆性 dNK 细胞在再次妊娠中具有更强的妊娠支持功能。多次妊娠蜕膜组织中的 NKG2Chigh NK 细胞比例相比初次妊娠蜕膜显著增加,该群细胞被定义为妊娠训练的 dNK 细胞 (Pregnancy Trained dNK,PTdNK)。PTdNK细胞高表达多种细胞因子、趋化因子受体、白细胞介素及激素调节蛋白,具有妊娠支持作用的 ILT2 分子[14] 在该群细胞中也存在明显的上调表达。PTdNKs在 IFNG和VEGFA基因的增强子周围染色质可及性增加,能够有效促进胎盘的血管生成。

  • 4 dNK细胞的病理作用

  • 4.1 dNK细胞在复发性自然流产 (Recurrent Spontaneous Abortion,RSA) 中的作用

  • RSA是一种令人痛苦的妊娠障碍,大约影响了 2.5% 的尝试妊娠女性。RSA 为与同一配偶连续发生2次及以上在妊娠28周之前的妊娠丢失[40]。一半以上的 RSA 发生原因不明,其中又有一半以上的不明原因反复流产是母体免疫功能障碍导致的[41]。妊娠早期 dNK 的数量不足和表型异常 (通常为细胞毒性增加) 均可导致RSA。相比正常女性,有反复流产病史女性的 CD16+ CD56dim子宫 NK细胞比例更高,且该群细胞表达更高水平的细胞毒性受体如 NKp30、 NKp44 和 NKp46[42]。此外在 RSA 女性 dNK 细胞中,CD49a组织居留标志基因表达较低,而颗粒酶 B (Granzyme-B,GZMB)、穿孔素和 IFN-γ的表达水平显著高于正常妊娠女性[43]。Tim-3 在 60% 以上的 dNK 细胞上表达,Tim-3+ dNK 细胞表达更高水平的IL-4、较低水平的TNF-α和穿孔素。 EVTs通过分泌半乳糖凝集素-9(Galectin-9,Gal-9) 与 Tim-3 相互作用诱导 pNK 细胞向 dNK 样表型转化。Tim-3+ dNK细胞比例在人类流产和小鼠流产模型中降低。综上,EVTs和dNK细胞间Gal-9/Tim-3 信号降低可能导致RSA[21]。RSA患者的trNK细胞减少且分泌生长因子能力受损[14],已知生长因子上游的转录因子是 PBX1,与之对应的是 RSA 患者 CD49a+ PBX1+ dNK 细胞数量和比例均显著降低[37]。 RSA 患者中,CD56brightCD27+ NK 亚群分泌 IFN-γ 抑制炎性TH17细胞的功能丧失而导致免疫失衡[15]。子宫内膜蜕膜化过程中蜕膜基质细胞 (Decidual Stromal Cells,DSCs) 自噬水平显著升高,并进一步促进了dNK细胞在正常妊娠期蜕膜组织中的富集和驻留。不明原因反复流产患者 DSCs的自噬水平减弱导致dNK细胞驻留不足。敲除NK细胞的孕鼠胎盘血管重塑较差,胚胎着床数量降低,胚胎丢失率显著升高。低剂量的雷帕霉素能够通过促进 DSCs自噬促进dNK细胞的驻留,并改善自然流产孕鼠的胚胎丢失[44]

  • 4.2 dNK细胞在PE中的作用

  • PE 是指妊娠 20 周后新发的或恶化的高血压和蛋白尿[45],是一种严重的妊娠期疾病,可能导致 FGR 甚至死胎,也可造成母体缺血和多器官损伤[46]。早期一些研究认为,在胎盘发育过程中, EVTs 细胞的侵袭和螺旋动脉重塑过程受损是子痫前期发病的关键原因[47-49]。dNK 细胞在以上两个过程中起到关键作用,据此可以推测功能异常的dNK 细胞可能是子痫前期发生的始动因素[50]。Shreeve 等[51] 的研究表明,NKG2A 能够驱动 NK 细胞的教育。敲除 NKG2A 基因导致小鼠妊娠期母体血管应答不佳、胎盘基因表达紊乱、FDR和脑发育异常等在人类子痫前期综合征中常见的症状。在对 7 219 例子痫前期病例进行的全基因组关联研究中发现,与不利于 NKG2A教育的母体 HLA-B等位基因相关的风险大幅度增加。这些结果表明,未受到 NKG2A良好教育的 dNK细胞可能导致子痫前期的发生。还有研究表明,PE 患者的早孕蜕膜组织中的 Treg 细胞或 TGF-β 能够降低 dNK 细胞的 IFN-γ、 IL-8 和 CD107a 等活化性分子及血管生成因子的表达,使得血管生成受阻[52]

  • dNK 细胞表面 KIRs 受体的表达也会影响子痫的发生。例如在正常妊娠中,dNK细胞表面的抑制性受体 KIR2DL4 能够与 EVTs 细胞表达的 HLA-G 相互结合以阻止dNK细胞的杀伤,而胎盘中HLA-G 下调表达使得 dNK 细胞以“丢失自我”的方式行使杀伤功能,导致 PE[53]。而当 dNK 细胞丢失大部分或者全部活化性KIRs受体时,与EVTs细胞表达的HLA-C2相互作用时使dNK细胞的功能被过度抑制,从而导致PE[54]

  • 4.3 dNK细胞在妊娠期糖尿病 (Gestational Diabetes Mellitus,GDM) 中的作用

  • GDM 是妊娠期最常见的并发症之一,其特征是在妊娠期间首次检测或识别到的血糖水平升高,并且大多数异常的葡萄糖代谢在分娩后会恢复正常[55-56]。妊娠早期的 GDM 可能导致自然流产,而妊娠晚期的 GDM 会增加 PE 和巨大胎儿的风险[57]。研究显示,链脲霉素诱导的 GDM 小鼠子代出现 FGR,小鼠蜕膜中CD27- CD11b+ 细胞毒性dNK细胞的比例显著增加,而滋养型CD27-CD11b- dNK细胞的比例显著减少。同样的趋势也出现在 GDM 患者的外周血 NK 细胞中。用正常 dNK 细胞对 GDM 小鼠宫腔灌注后,胎儿生长受限得到缓解,dNK细胞的比例也得到恢复[58]。综上,以 CD27 和 CD11b 划分的各dNK细胞亚群比例失调与GDM的发生密切相关,正常dNK细胞的宫腔灌注对于GDM有一定的治疗潜力。

  • 4.4 dNK细胞在病原体感染中的作用

  • 在妊娠过程中,李斯特菌 (Listeria monocytogenes,Lm)、人类巨细胞病毒 (Human Cytomegalovirus,HCMV)、寨卡病毒和弓形虫等多种病原体均能通过胎盘垂直感染,对胎儿发育产生毁灭性的影响[59]。dNK细胞可以识别并消除某些病原体以维持正常妊娠,也可能由于某些感染产生表型的改变而导致不良妊娠结局。

  • 4.4.1 Lm感染

  • 人通常通过摄入受污染的食物而导致Lm感染,妊娠期间该感染能够导致流产和新生儿败血症等严重疾病[60]。dNK 细胞中高表达抗菌肽颗粒溶素 (Granulysin,GNLY)(表达水平甚至高于颗粒酶和穿孔素),此前其功能一直未被阐明。近期研究表明,dNK细胞能够伸出碳纳米管,将GNLY有选择性地递送至 Lm感染的滋养层细胞中,并精准地杀死胞内的Lm,而不损伤滋养层细胞本身[61]。进一步研究发现,dNK细胞在杀死胞内 Lm时,能够合成大量的脂质运载蛋白 (Apolipoprotein D,ApoD),通过 LRP1将脂质递送至滋养层细胞以阻止滋养层细胞的凋亡[62]。因此,dNK细胞能够巧妙地将杀伤性颗粒精确递送至滋养层细胞内部杀死胞内菌而不破坏 EVTs本身的完整性,并通过给滋养层细胞输送脂质维持其存活。

  • 4.4.2 HCMV感染

  • 0.5 %~4% 的产妇妊娠期间会初次感染 HCMV。产妇妊娠初期感染 HCMV 可能导致婴儿大脑复杂的后脑炎性损伤,导致运动和智力发育迟缓、脑瘫、癫痫、视网膜缺陷和进行性听力丧失[63]。蜕膜和胎盘中的成纤维细胞、内皮细胞、巨噬细胞和细胞滋养层细胞是妊娠中 HCMV 感染的主要对象[64]。 dNK 细胞在暴露于 HCMV 感染的蜕膜成纤维细胞或滋养层类器官后会发生功能转换,增加免疫突触的形成和脱颗粒效应,成为细胞毒效应细胞,这种细胞毒作用是 TRAIL 和 FasL 非依赖的。这些结果表明,dNK 细胞可能以非死亡受配体的方式控制 HCMV 宫内感染[65]。妊娠早期的 dNK 细胞能够通过 KIR2DS1 识别 HCMV 感染后表达 HLA-C2 的蜕膜基质细胞,增加 CD107a 表达并产生 IFN-γ、 TNF-α 和 GM-CSF,以杀伤被感染的蜕膜基质细胞,但无法对 HCMV 感染的原代滋养层细胞或滋养层细胞系产生如上反应[66]。而妊娠晚期的 dNK 细胞无法对蜕膜基质细胞产生脱颗粒反应,这可能是由于妊娠晚期 dNK 细胞对 HLA-C 识别的减弱导致的[67]

  • 4.4.3 弓形虫感染

  • 妊娠早期的弓形虫感染可能导致母体免疫失调,最终导致不良的妊娠结果,如流产、死胎或胎儿畸形[68]。弓形虫经常被用作研究 Th1细胞介导的抗胞内感染免疫机制的模型生物。然而,最近的发现表明,产生IFN-γ的NK细胞和中性粒细胞的Ⅰ型天然免疫应答,而不是产生IFN-γ的T细胞,决定了对弓形虫的宿主抵抗力[69]。弓形虫的感染通过多种机制改变dNK细胞表型,导致不良妊娠结局。研究发现,弓形虫感染后dNK细胞表达的Tim-3显著下调。相比于WT鼠,Tim-3敲除孕鼠感染弓形虫后展现出更差的妊娠结局。机制上,弓形虫感染诱导的 Tim-3下调显著激活了PI3K-AKT和JAK-STAT信号通路,进而上调了Granzyme-B、Perforin、IFN-γ和 IL-10的产生,从而导致 dNK 细胞功能的紊乱和不良妊娠结局[70]。类似地,弓形虫感染后dNK细胞表达 2B4水平显著下调。与感染的 WT孕鼠相比,感染的2B4敲除孕鼠显示出更差的妊娠结局。感染导致的 2B4 下调激活了 dNK 细胞 TNF-α 和 IFN-γ 表达,dNK细胞毒性增强[71]。此外,弓形虫感染也能够通过损害 dNK 细胞的生长因子分泌能力导致 FGR[72]

  • 弓形虫还能够通过感染的 CD1c+ DC 细胞间接增强 dNK 细胞的 IFN-γ 产生和 NKG2D 表达,从而导致 dNK 细胞的细胞毒性增加[73]。TGF-β1 的治疗能够降低弓形虫感染所导致的 dNK细胞毒性增加,从而改善妊娠结局[74]。总的来说,弓形虫感染能够通过直接或间接的方式增强 dNK细胞的细胞毒性,导致不良妊娠结局,而 TGF-β1 可能是治疗弓形虫感染引起的异常妊娠结局的潜在免疫保护方法。妊娠早期dNK细胞的功能总结见图1。

  • 图1 妊娠早期dNK细胞的生理和病理功能

  • Figure1 Physiological and pathological functions of decidual NK cells in early pregnancy

  • 5 总结

  • NK 细胞是妊娠早期蜕膜中含量最丰富的免疫细胞,在维持正常妊娠中起到决定性作用。dNK细胞可能是由CD34+ 造血细胞前体分化而来,也可能是由组织居留的 NK细胞扩增得到,还可能是从外周血 pNK 细胞迁移而来。与 CD56dimCD16+ 的外周血 NK 细胞不同,CD56brightCD16- 的 dNK 细胞大部分呈现CD27- CD11b表型,展现出较强的促胚胎生长功能。在正常妊娠中,dNK细胞主要起到维持免疫耐受、促进螺旋动脉重塑和血管生成、控制滋养层细胞侵袭和分化、促进胚胎发育等功能。NK 细胞的数量和功能异常均可导致RSA、PE和GDM等妊娠疾病。dNK细胞在对抗病原体垂直感染的过程中起到了一定的作用,但病原体对 dNK 细胞的改变也可导致不良的妊娠结局。

  • 人们对 dNK 细胞与蜕膜基质细胞及其他蜕膜免疫细胞的相互调节作用已经有一定的了解,但还有很多细胞之间的相互作用类型仍然被忽略,如 dNK细胞对于另一大免疫细胞亚群——巨噬细胞的调控目前研究还相对较少。虽然 dNK 细胞在多种妊娠疾病中的作用机制已经被破解,但由于很多分子无法局部干预,导致仍然缺少真正有效的治疗靶点。已经有研究人员开发了将脐血 NK细胞、骨髓 NK 细胞和 pNK 细胞诱导成为 dNK 样细胞的方法[75],诱导得到的细胞在小鼠模型中展现了较好的促胚胎生长效果。通过对经血 NK细胞的检测能够部分反映出子宫 NK 细胞的状态[76],将这种无创检测和自体外周血诱导的dNK样细胞的宫腔灌注相结合,将成为一种十分具有前景的妊娠疾病治疗方法。

  • 参考文献

    • [1] GELLERSEN B,BROSENS J J.Cyclic decidualization of the human endometrium in reproductive health and failure[J].Endocrine Reviews,2014,35(6):851-905.

    • [2] ERLEBACHER A.Immunology of the maternal-fetal interface[J].Annu Rev Immunol,2013,31(1):387-411.

    • [3] ANDER S E,DIAMOND M S,COYNE C B.Immune responses at the maternal-fetal interface[J].Sci Immunol,2019,4(31):eaat6114.

    • [4] XU Y Y,WANG S C,LI D J,et al.Co-signaling molecules in maternal-fetal immunity[J].Trends in Molecular Medicine,2017,23(1):46-58.

    • [5] VACCA P,VITALE C,MONTALDO E,et al.CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J].Proc Natl Acad Sci USA,2011,108(6):2402-2407.

    • [6] SOJKA D K,YANG L,PLOUGASTEL-DOUGLAS B,et al.Cutting edge:Local proliferation of uterine tissueresident NK cells during decidualization in mice[J].The Journal of Immunology,2018,201(9):2551-2556.

    • [7] HAN M,HU L,WU D,et al.IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy[J].Nat Commun,2023,14(1):7109.

    • [8] KESKIN D B,ALLAN D S J,RYBALOV B,et al.TGFβ promotes conversion of CD16 + peripheral blood NK cells into CD16NK cells with similarities to decidual NK cells [J].Proc Natl Acad Sci USA,2007,104(9):3378-3383.

    • [9] CERDEIRA A S,RAJAKUMAR A,ROYLE C M,et al.Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors[J].The Journal of Immunology,2013,190(8):3939-3948.

    • [10] STRUNZ B,BISTER J,JÖNSSON H,et al.Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy[J].Sci Immunol,2021,6(56):eabb7800.

    • [11] XU W,CHERRIER D E,CHEA S,et al.An Id2RFPreporter mouse redefines innate lymphoid cell precursor potentials[J].Immunity,2019,50(4):1054-1068.e3.

    • [12] CRINIER A,NARNI-MANCINELLI E,UGOLINI S,et al.SnapShot:Natural killer cells[J].Cell,2020,180(6):1280-1281.

    • [13] FU B,WANG F,SUN R,et al.CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells[J].Immunology,2011,133(3):350-359.

    • [14] FU B,ZHOU Y,NI X,et al.Natural killer cells promote fetal development through the secretion of growth-promoting factors[J].Immunity,2017,47(6):1100-1113.e6.

    • [15] FU B,LI X,SUN R,et al.Natural killer cells promote immune tolerance by regulating inflammatory Th17 cells at the human maternal-fetal interface[J].Proc Natl Acad Sci USA,2013,110(3).

    • [16] NI F,SUN R,FU B,et al.IGF-1 promotes the development and cytotoxic activity of human NK cells[J].Nature Communications,2013,1479:4.

    • [17] VENTO-TORMO R,EFREMOVA M,BOTTING R A,et al.Single-cell reconstruction of the early maternal–fetal interface in humans[J].Nature,2018,563(7731):347-353.

    • [18] KOPCOW H D,ALLAN D S J,CHEN X,et al.Human decidual NK cells form immature activating synapses and are not cytotoxic[J].Proc Natl Acad Sci USA,2005,102(43):15563-15568.

    • [19] PAZMANY L,MANDELBOIM O,VALÉS-GÓMEZ M,et al.Protection from natural killer cell-mediated lysis by HLA-G expression on target cells[J].Science,1996,274(5288):792-795.

    • [20] TILBURGS T,EVANS J H,CRESPO Â C,et al.The HLAG cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J].Proc Natl Acad Sci USA,2015,112(43):13312-13317.

    • [21] LI Y H,ZHOU W H,TAO Y,et al.The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J].Cell Mol Immunol,2016,13(1):73-81.

    • [22] KALKUNTE S S,MSELLE T F,NORRIS W E,et al.Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface[J].J Immunol,2009,182(7):4085-4092.

    • [23] VACCA P,CANTONI C,VITALE M,et al.Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression[J].Proc Natl Acad Sci USA,2010,107(26):11918-11923.

    • [24] TAO Y,LI Y H,ZHANG D,et al.Decidual CXCR4+ CD56bright NK cells as a novel NK subset in maternalfoetal immune tolerance to alleviate early pregnancy failure [J].Clin Transl Med,2021,11(10):e540.

    • [25] KAM E P,GARDNER L,LOKE Y W,et al.The role of trophoblast in the physiological change in decidual spiral arteries[J].Hum Reprod,1999,14(8):2131-2138.

    • [26] SMITH S D,DUNK C E,APLIN J D,et al.Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy[J].Am J Pathol,2009,174(5):1959-1971.

    • [27] KHONG T Y,DE WOLF F,ROBERTSON W B,et al.Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by smallfor gestational age infants[J].Br J Obstet Gynaecol,1986,93(10):1049-1059.

    • [28] YOUNG B C,LEVINE R J,KARUMANCHI S A.Pathogenesis of preeclampsia[J].Annu Rev Pathol,2010,5:173-192.

    • [29] ROBSON A,HARRIS L K,INNES B A,et al.Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J].FASEB J,2012,26(12):4876-4885.

    • [30] HANNA J,GOLDMAN-WOHL D,HAMANI Y,et al.Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J].Nat Med,2006,12(9):1065-1074.

    • [31] HUPPERTZ B.Traditional and new routes of trophoblast invasion and their implications for pregnancy diseases[J].Int J Mol Sci,2019,21(1):289.

    • [32] CHAZARA O,XIONG S,MOFFETT A.Maternal KIR and fetal HLA-C:A fine balance[J].J Leukoc Biol,2011,90(4):703-716.

    • [33] LASH G E,OTUN H A,INNES B A,et al.Interferongamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels[J].FASEB J,2006,20(14):2512-2518.

    • [34] OTUN H A,LASH G E,INNES B A,et al.Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion[J].Journal of Reproductive Immunology,2011,88(1):1-11.

    • [35] RAJAGOPALAN S,BRYCESON Y T,KUPPUSAMY S P,et al.Activation of NK cells by an endocytosed receptor for soluble HLA-G[J].PLoS Biol,2006,4(1):e9.

    • [36] LI Q,SHARKEY A,SHERIDAN M,et al.Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy[J].Cell Stem Cell,2024,31(2):181-195.e9.

    • [37] ZHOU Y,FU B,XU X,et al.PBX1 expression in uterine natural killer cells drives fetal growth[J].Sci Transl Med,2020,12(537):eaax1798.

    • [38] NETEA M G,DOMÍNGUEZ-ANDRÉS J,BARREIRO L B,et al.Defining trained immunity and its role in health and disease[J].Nat Rev Immunol,2020,20(6):375-388.

    • [39] GAMLIEL M,GOLDMAN-WOHL D,ISAACSON B,et al.Trained memory of human uterine NK cells enhances their function in subsequent pregnancies[J].Immunity,2018,48(5):951-962.e5.

    • [40] DIMITRIADIS E,MENKHORST E,SAITO S,et al.Recurrent pregnancy loss[J].Nat Rev Dis Primers,2020,6(1):98.

    • [41] BAEK K H,LEE E J,KIM Y S.Recurrent pregnancy loss:The key potential mechanisms[J].Trends Mol Med,2007,13(7):310-317.

    • [42] EL-AZZAMY H,DAMBAEVA S V,KATUKURUND‐ AGE D,et al.Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses[J].Am J Reprod Immunol,2018,80(4):e13024.

    • [43] LI H,HOU Y,ZHANG S,et al.CD49a regulates the function of human decidual natural killer cells[J].Am J Reprod Immunol,2019,81(4):e13101.

    • [44] LU H,YANG H L,ZHOU W J,et al.Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence[J].Autophagy,2021,17(9):2511-2527.

    • [45] J ESPINOZA,A VIDAEFF,C PETTKER,et al.Gesta-tional hypertension and preeclampsia:ACOG practice bulletin,number 222[J].Obstet Gynecol,2020,135(6):1492-1495.

    • [46] JUNG E,ROMERO R,YEO L,et al.The etiology of preeclampsia[J].American Journal of Obstetrics and Gynecology,2022,226(2):S844-S866.

    • [47] MCMASTER M T,ZHOU Y,FISHER S J.Abnormal placentation and the syndrome of preeclampsia[J].Seminars in Nephrology,2004,24(6):540-547.

    • [48] ZHOU Y,DAMSKY C H,CHIU K,et al.Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts[J].J Clin Invest,1993,91(3):950-960.

    • [49] OPICHKA M A,RAPPELT M W,GUTTERMAN D D,et al.Vascular dysfunction in preeclampsia[J].Cells,2021,10(11):3055.

    • [50] DEER E,HERROCK O,CAMPBELL N,et al.The role of immune cells and mediators in preeclampsia[J].Nat Rev Nephrol,2023,19(4):257-270.

    • [51] SHREEVE N,DEPIERREUX D,HAWKES D,et al.The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice [J].Immunity,2021,54(6):1231-1244.e4.

    • [52] ZHANG J,DUNK C E,SHYNLOVA O,et al.TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia[J].EBioMedicine,2019,39:531-539.

    • [53] WEDENOJA S,YOSHIHARA M,TEDER H,et al.Fetal HLA-G mediated immune tolerance and interferon response in preeclampsia[J].EBioMedicine,2020,59:102872.

    • [54] HIBY S E,WALKER J J,O'SHAUGHNESSY K M,et al.Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success [J].J Exp Med,2004,200(8):957-965.

    • [55] XIE J,LI L,XING H.Metabolomics in gestational diabetes mellitus:A review[J].Clin Chim Acta,2023,539:134-143.

    • [56] MOON J H,JANG H C.Gestational diabetes mellitus:Diagnostic approaches and maternal-offspring complications [J].Diabetes Metab J,2022,46(1):3-14.

    • [57] ACOG Practice Bulletin No.190:Gestational diabetes mellitus[J].Obstet Gynecol,2018,131(2):e49-e64.

    • [58] XIONG Y,WANG Y,WU M,et al.Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction[J].Front Immunol,2024,15:1346231.

    • [59] ARORA N,SADOVSKY Y,DERMODY T S,et al.Microbial vertical transmission during human pregnancy [J].Cell Host Microbe,2017,21(5):561-567.

    • [60] KOOPMANS M M,BROUWER M C,VÁZQUEZBOLAND J A,et al.Human listeriosis[J].Clin Microbiol Rev,2023,36(1):e0006019.

    • [61] CRESPO Â C,MULIK S,DOTIWALA F,et al.Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts[J].Cell,2020,182(5):1125-1139.e18.

    • [62] FANG X,ZHOU Y,CHEN S,et al.Natural killer cells promote intra-cellular-infected trophoblasts survival via APOD-LRP1 axis[J].Immunology,2023,13621:1-15.

    • [63] BUXMANN H,HAMPRECHT K,MEYER-WITTKOPF M,et al.Primary human cytomegalovirus(HCMV)infection in pregnancy[J].Dtsch Arztebl Int,2017,114(4):45-52.

    • [64] WEISBLUM Y,PANET A,ZAKAY-RONES Z,et al.Modeling of human cytomegalovirus maternal-fetal trans‐ mission in a novel decidual organ culture[J].J Virol,2011,85(24):13204-13213.

    • [65] SIEWIERA J,EL COSTA H,TABIASCO J,et al.Human cytomegalovirus infection elicits new decidual natural killer cell effector functions[J].PLoS Pathog,2013,9(4):e1003257.

    • [66] CRESPO Â C,STROMINGER J L,TILBURGS T.Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection [J].Proc Natl Acad Sci USA,2016,113(52):15072-15077.

    • [67] DE MENDONÇA VIEIRA R,MEAGHER A,CRESPO Â C,et al.Human term pregnancy decidual NK cells generate distinct cytotoxic responses[J].J Immunol,2020,204(12):3149-3159.

    • [68] DOUDOU Y,RENAUD P,CORALIE L,et al.Toxoplasmosis among pregnant women:High seroprevalence and risk factors in Kinshasa,Democratic Republic of Congo [J].Asian Pac J Trop Biomed,2014,4(1):69-74.

    • [69] YAROVINSKY F.Innate immunity to Toxoplasma gondii infection[J].Nat Rev Immunol,2014,14(2):109-121.

    • [70] LI T,CUI L,XU X,et al.The role of Tim-3 on dNK cells dysfunction during abnormal pregnancy with toxoplasma gondii infection[J].Front Cell Infect Microbiol,2021,11:587150.

    • [71] XU X,ZHENG G,REN Y,et al.A novel 2B4 receptor leads to worse pregnancy outcomes by facilitating TNF-α and IFN-γ production in dNK cells during Toxoplasma gondii infection[J].Parasites Vectors,2022,15(1):337.

    • [72] ZHANG F,SUN W,ZHAO J,et al.Toxoplasma gondii causes adverse pregnancy outcomes by damaging uterine tissue-resident NK cells that secrete growth-promoting factors[J].The Journal of Infectious Diseases,2024,229(2):547-557.

    • [73] LIU X,ZHAO M,YANG X,et al.Toxoplasma gondii infection of decidual CD1c+ dendritic cells enhances cytotoxicity of decidual natural killer cells[J].Inflammation,2014,37(4):1261-1270.

    • [74] XU X,ZHANG J,ZHAN S,et al.TGF-β1 improving abnormal pregnancy outcomes induced by Toxoplasma gondii infection:Regulating NKG2D/DAP10 and killer subset of decidual NK cells[J].Cellular Immunology,2017,317:9-17.

    • [75] DU X,ZHU H,JIAO D,et al.Human-induced CD49a+ NK cells promote fetal growth[J].Front Immunol,2022,13:821542.

    • [76] TONG X,GAO M,DU X,et al.Analysis of uterine CD49a+ NK cell subsets in menstrual blood reflects endometrial status and association with recurrent spontaneous abortion[J].Cell Mol Immunol,2021,18(7):1838-1840.

  • 参考文献

    • [1] GELLERSEN B,BROSENS J J.Cyclic decidualization of the human endometrium in reproductive health and failure[J].Endocrine Reviews,2014,35(6):851-905.

    • [2] ERLEBACHER A.Immunology of the maternal-fetal interface[J].Annu Rev Immunol,2013,31(1):387-411.

    • [3] ANDER S E,DIAMOND M S,COYNE C B.Immune responses at the maternal-fetal interface[J].Sci Immunol,2019,4(31):eaat6114.

    • [4] XU Y Y,WANG S C,LI D J,et al.Co-signaling molecules in maternal-fetal immunity[J].Trends in Molecular Medicine,2017,23(1):46-58.

    • [5] VACCA P,VITALE C,MONTALDO E,et al.CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells[J].Proc Natl Acad Sci USA,2011,108(6):2402-2407.

    • [6] SOJKA D K,YANG L,PLOUGASTEL-DOUGLAS B,et al.Cutting edge:Local proliferation of uterine tissueresident NK cells during decidualization in mice[J].The Journal of Immunology,2018,201(9):2551-2556.

    • [7] HAN M,HU L,WU D,et al.IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy[J].Nat Commun,2023,14(1):7109.

    • [8] KESKIN D B,ALLAN D S J,RYBALOV B,et al.TGFβ promotes conversion of CD16 + peripheral blood NK cells into CD16NK cells with similarities to decidual NK cells [J].Proc Natl Acad Sci USA,2007,104(9):3378-3383.

    • [9] CERDEIRA A S,RAJAKUMAR A,ROYLE C M,et al.Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors[J].The Journal of Immunology,2013,190(8):3939-3948.

    • [10] STRUNZ B,BISTER J,JÖNSSON H,et al.Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy[J].Sci Immunol,2021,6(56):eabb7800.

    • [11] XU W,CHERRIER D E,CHEA S,et al.An Id2RFPreporter mouse redefines innate lymphoid cell precursor potentials[J].Immunity,2019,50(4):1054-1068.e3.

    • [12] CRINIER A,NARNI-MANCINELLI E,UGOLINI S,et al.SnapShot:Natural killer cells[J].Cell,2020,180(6):1280-1281.

    • [13] FU B,WANG F,SUN R,et al.CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells[J].Immunology,2011,133(3):350-359.

    • [14] FU B,ZHOU Y,NI X,et al.Natural killer cells promote fetal development through the secretion of growth-promoting factors[J].Immunity,2017,47(6):1100-1113.e6.

    • [15] FU B,LI X,SUN R,et al.Natural killer cells promote immune tolerance by regulating inflammatory Th17 cells at the human maternal-fetal interface[J].Proc Natl Acad Sci USA,2013,110(3).

    • [16] NI F,SUN R,FU B,et al.IGF-1 promotes the development and cytotoxic activity of human NK cells[J].Nature Communications,2013,1479:4.

    • [17] VENTO-TORMO R,EFREMOVA M,BOTTING R A,et al.Single-cell reconstruction of the early maternal–fetal interface in humans[J].Nature,2018,563(7731):347-353.

    • [18] KOPCOW H D,ALLAN D S J,CHEN X,et al.Human decidual NK cells form immature activating synapses and are not cytotoxic[J].Proc Natl Acad Sci USA,2005,102(43):15563-15568.

    • [19] PAZMANY L,MANDELBOIM O,VALÉS-GÓMEZ M,et al.Protection from natural killer cell-mediated lysis by HLA-G expression on target cells[J].Science,1996,274(5288):792-795.

    • [20] TILBURGS T,EVANS J H,CRESPO Â C,et al.The HLAG cycle provides for both NK tolerance and immunity at the maternal-fetal interface[J].Proc Natl Acad Sci USA,2015,112(43):13312-13317.

    • [21] LI Y H,ZHOU W H,TAO Y,et al.The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal-fetal interface in early pregnancy[J].Cell Mol Immunol,2016,13(1):73-81.

    • [22] KALKUNTE S S,MSELLE T F,NORRIS W E,et al.Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface[J].J Immunol,2009,182(7):4085-4092.

    • [23] VACCA P,CANTONI C,VITALE M,et al.Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression[J].Proc Natl Acad Sci USA,2010,107(26):11918-11923.

    • [24] TAO Y,LI Y H,ZHANG D,et al.Decidual CXCR4+ CD56bright NK cells as a novel NK subset in maternalfoetal immune tolerance to alleviate early pregnancy failure [J].Clin Transl Med,2021,11(10):e540.

    • [25] KAM E P,GARDNER L,LOKE Y W,et al.The role of trophoblast in the physiological change in decidual spiral arteries[J].Hum Reprod,1999,14(8):2131-2138.

    • [26] SMITH S D,DUNK C E,APLIN J D,et al.Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy[J].Am J Pathol,2009,174(5):1959-1971.

    • [27] KHONG T Y,DE WOLF F,ROBERTSON W B,et al.Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by smallfor gestational age infants[J].Br J Obstet Gynaecol,1986,93(10):1049-1059.

    • [28] YOUNG B C,LEVINE R J,KARUMANCHI S A.Pathogenesis of preeclampsia[J].Annu Rev Pathol,2010,5:173-192.

    • [29] ROBSON A,HARRIS L K,INNES B A,et al.Uterine natural killer cells initiate spiral artery remodeling in human pregnancy[J].FASEB J,2012,26(12):4876-4885.

    • [30] HANNA J,GOLDMAN-WOHL D,HAMANI Y,et al.Decidual NK cells regulate key developmental processes at the human fetal-maternal interface[J].Nat Med,2006,12(9):1065-1074.

    • [31] HUPPERTZ B.Traditional and new routes of trophoblast invasion and their implications for pregnancy diseases[J].Int J Mol Sci,2019,21(1):289.

    • [32] CHAZARA O,XIONG S,MOFFETT A.Maternal KIR and fetal HLA-C:A fine balance[J].J Leukoc Biol,2011,90(4):703-716.

    • [33] LASH G E,OTUN H A,INNES B A,et al.Interferongamma inhibits extravillous trophoblast cell invasion by a mechanism that involves both changes in apoptosis and protease levels[J].FASEB J,2006,20(14):2512-2518.

    • [34] OTUN H A,LASH G E,INNES B A,et al.Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion[J].Journal of Reproductive Immunology,2011,88(1):1-11.

    • [35] RAJAGOPALAN S,BRYCESON Y T,KUPPUSAMY S P,et al.Activation of NK cells by an endocytosed receptor for soluble HLA-G[J].PLoS Biol,2006,4(1):e9.

    • [36] LI Q,SHARKEY A,SHERIDAN M,et al.Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy[J].Cell Stem Cell,2024,31(2):181-195.e9.

    • [37] ZHOU Y,FU B,XU X,et al.PBX1 expression in uterine natural killer cells drives fetal growth[J].Sci Transl Med,2020,12(537):eaax1798.

    • [38] NETEA M G,DOMÍNGUEZ-ANDRÉS J,BARREIRO L B,et al.Defining trained immunity and its role in health and disease[J].Nat Rev Immunol,2020,20(6):375-388.

    • [39] GAMLIEL M,GOLDMAN-WOHL D,ISAACSON B,et al.Trained memory of human uterine NK cells enhances their function in subsequent pregnancies[J].Immunity,2018,48(5):951-962.e5.

    • [40] DIMITRIADIS E,MENKHORST E,SAITO S,et al.Recurrent pregnancy loss[J].Nat Rev Dis Primers,2020,6(1):98.

    • [41] BAEK K H,LEE E J,KIM Y S.Recurrent pregnancy loss:The key potential mechanisms[J].Trends Mol Med,2007,13(7):310-317.

    • [42] EL-AZZAMY H,DAMBAEVA S V,KATUKURUND‐ AGE D,et al.Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses[J].Am J Reprod Immunol,2018,80(4):e13024.

    • [43] LI H,HOU Y,ZHANG S,et al.CD49a regulates the function of human decidual natural killer cells[J].Am J Reprod Immunol,2019,81(4):e13101.

    • [44] LU H,YANG H L,ZHOU W J,et al.Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence[J].Autophagy,2021,17(9):2511-2527.

    • [45] J ESPINOZA,A VIDAEFF,C PETTKER,et al.Gesta-tional hypertension and preeclampsia:ACOG practice bulletin,number 222[J].Obstet Gynecol,2020,135(6):1492-1495.

    • [46] JUNG E,ROMERO R,YEO L,et al.The etiology of preeclampsia[J].American Journal of Obstetrics and Gynecology,2022,226(2):S844-S866.

    • [47] MCMASTER M T,ZHOU Y,FISHER S J.Abnormal placentation and the syndrome of preeclampsia[J].Seminars in Nephrology,2004,24(6):540-547.

    • [48] ZHOU Y,DAMSKY C H,CHIU K,et al.Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts[J].J Clin Invest,1993,91(3):950-960.

    • [49] OPICHKA M A,RAPPELT M W,GUTTERMAN D D,et al.Vascular dysfunction in preeclampsia[J].Cells,2021,10(11):3055.

    • [50] DEER E,HERROCK O,CAMPBELL N,et al.The role of immune cells and mediators in preeclampsia[J].Nat Rev Nephrol,2023,19(4):257-270.

    • [51] SHREEVE N,DEPIERREUX D,HAWKES D,et al.The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice [J].Immunity,2021,54(6):1231-1244.e4.

    • [52] ZHANG J,DUNK C E,SHYNLOVA O,et al.TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia[J].EBioMedicine,2019,39:531-539.

    • [53] WEDENOJA S,YOSHIHARA M,TEDER H,et al.Fetal HLA-G mediated immune tolerance and interferon response in preeclampsia[J].EBioMedicine,2020,59:102872.

    • [54] HIBY S E,WALKER J J,O'SHAUGHNESSY K M,et al.Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success [J].J Exp Med,2004,200(8):957-965.

    • [55] XIE J,LI L,XING H.Metabolomics in gestational diabetes mellitus:A review[J].Clin Chim Acta,2023,539:134-143.

    • [56] MOON J H,JANG H C.Gestational diabetes mellitus:Diagnostic approaches and maternal-offspring complications [J].Diabetes Metab J,2022,46(1):3-14.

    • [57] ACOG Practice Bulletin No.190:Gestational diabetes mellitus[J].Obstet Gynecol,2018,131(2):e49-e64.

    • [58] XIONG Y,WANG Y,WU M,et al.Aberrant NK cell profile in gestational diabetes mellitus with fetal growth restriction[J].Front Immunol,2024,15:1346231.

    • [59] ARORA N,SADOVSKY Y,DERMODY T S,et al.Microbial vertical transmission during human pregnancy [J].Cell Host Microbe,2017,21(5):561-567.

    • [60] KOOPMANS M M,BROUWER M C,VÁZQUEZBOLAND J A,et al.Human listeriosis[J].Clin Microbiol Rev,2023,36(1):e0006019.

    • [61] CRESPO Â C,MULIK S,DOTIWALA F,et al.Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts[J].Cell,2020,182(5):1125-1139.e18.

    • [62] FANG X,ZHOU Y,CHEN S,et al.Natural killer cells promote intra-cellular-infected trophoblasts survival via APOD-LRP1 axis[J].Immunology,2023,13621:1-15.

    • [63] BUXMANN H,HAMPRECHT K,MEYER-WITTKOPF M,et al.Primary human cytomegalovirus(HCMV)infection in pregnancy[J].Dtsch Arztebl Int,2017,114(4):45-52.

    • [64] WEISBLUM Y,PANET A,ZAKAY-RONES Z,et al.Modeling of human cytomegalovirus maternal-fetal trans‐ mission in a novel decidual organ culture[J].J Virol,2011,85(24):13204-13213.

    • [65] SIEWIERA J,EL COSTA H,TABIASCO J,et al.Human cytomegalovirus infection elicits new decidual natural killer cell effector functions[J].PLoS Pathog,2013,9(4):e1003257.

    • [66] CRESPO Â C,STROMINGER J L,TILBURGS T.Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection [J].Proc Natl Acad Sci USA,2016,113(52):15072-15077.

    • [67] DE MENDONÇA VIEIRA R,MEAGHER A,CRESPO Â C,et al.Human term pregnancy decidual NK cells generate distinct cytotoxic responses[J].J Immunol,2020,204(12):3149-3159.

    • [68] DOUDOU Y,RENAUD P,CORALIE L,et al.Toxoplasmosis among pregnant women:High seroprevalence and risk factors in Kinshasa,Democratic Republic of Congo [J].Asian Pac J Trop Biomed,2014,4(1):69-74.

    • [69] YAROVINSKY F.Innate immunity to Toxoplasma gondii infection[J].Nat Rev Immunol,2014,14(2):109-121.

    • [70] LI T,CUI L,XU X,et al.The role of Tim-3 on dNK cells dysfunction during abnormal pregnancy with toxoplasma gondii infection[J].Front Cell Infect Microbiol,2021,11:587150.

    • [71] XU X,ZHENG G,REN Y,et al.A novel 2B4 receptor leads to worse pregnancy outcomes by facilitating TNF-α and IFN-γ production in dNK cells during Toxoplasma gondii infection[J].Parasites Vectors,2022,15(1):337.

    • [72] ZHANG F,SUN W,ZHAO J,et al.Toxoplasma gondii causes adverse pregnancy outcomes by damaging uterine tissue-resident NK cells that secrete growth-promoting factors[J].The Journal of Infectious Diseases,2024,229(2):547-557.

    • [73] LIU X,ZHAO M,YANG X,et al.Toxoplasma gondii infection of decidual CD1c+ dendritic cells enhances cytotoxicity of decidual natural killer cells[J].Inflammation,2014,37(4):1261-1270.

    • [74] XU X,ZHANG J,ZHAN S,et al.TGF-β1 improving abnormal pregnancy outcomes induced by Toxoplasma gondii infection:Regulating NKG2D/DAP10 and killer subset of decidual NK cells[J].Cellular Immunology,2017,317:9-17.

    • [75] DU X,ZHU H,JIAO D,et al.Human-induced CD49a+ NK cells promote fetal growth[J].Front Immunol,2022,13:821542.

    • [76] TONG X,GAO M,DU X,et al.Analysis of uterine CD49a+ NK cell subsets in menstrual blood reflects endometrial status and association with recurrent spontaneous abortion[J].Cell Mol Immunol,2021,18(7):1838-1840.

  • 关闭