-
0 引言
-
在母体中,胎儿处于无菌的子宫内,但出生后,新生儿须面对富含微生物的外部环境[1]。对于早产儿及低出生体重儿来说,长期的住院治疗及较多的侵入性操作使其暴露于条件致病菌的机会大大增加。新生儿的免疫系统尚未发育成熟,机体的抵抗力较差,一旦自身抵抗力低于致病菌的致病力后,患儿将会产生严重的炎症反应[2]。作为保护宿主的主要机制,髓系细胞可通过一系列机制抵御病原体感染,如吞噬作用、抗原提呈、产生活性氧 (Reactive Oxygen Species,ROS) 及抗菌蛋白、释放炎症介质等。髓源抑制性细胞 (Myeloid-Derived Suppressor Cells,MDSCs) 是来源于骨髓的未成熟髓系细胞群,由粒细胞、树突状细胞和单核细胞的祖细胞或前体组成,可通过细胞间直接接触、分泌抗炎细胞因子或外泌体发挥强大的免疫抑制功能[3]。在不同的生理和病理条件下,MDSCs发挥着不同的免疫调节作用。在肿瘤、炎症及感染等病理条件下,MDSCs 发挥的免疫调节作用已基本被阐明[3-8]。近年研究发现,在新生儿期等情况下, MDSCs 亦呈现较高的水平且具有重要的生理学功能[9-11]。同时,靶向 MDSCs的新生儿炎症的免疫治疗研究亦取得了一定的进展。鉴于此,本文综述了新生儿期 MDSCs 产生的原因及特征,新生儿期 MDSCs 的免疫调节作用和机制,以及其在新生儿炎症中发挥的作用,以期为基于新生儿期 MDSCs 的免疫治疗提供研究思路和参考。
-
1 新生儿期MDSCs的产生及特征
-
1.1 新生儿期MDSCs的产生
-
母胎耐受对于正常妊娠至关重要。近年来多项研究发现,MDSCs 参与了维持母胎耐受的实现。在妊娠期,MDSCs 主要在外周血、子宫和蜕膜中积累[8,12-13],可分为两个主要亚群,即粒细胞样髓源抑制性细胞 (Polymorphonuclear MDSCs, PMN-MDSCs) 和单核细胞样髓源抑制性细胞 (Monocytic MDSCs,M-MDSCs) [11,14-16],其数量的减少与早期流产有关[17]。据报道,蜕膜组织中 PMN-MDSCs数量增加的关键是 CXCR2/CXCL1作用轴[18]。其除具有招募作用之外,CXCR2 还调控 PMN-MDSCs 中精氨酸酶 1 (Argininase1,Arg1) 的活性,增强PMN-MDSCs的免疫抑制功能[19]。此外,在妊娠过程中,雌孕激素水平会显著升高,在维持蜕膜化子宫内膜、松弛子宫平滑肌、改善子宫供血等方面发挥关键作用,为子宫内胎儿发育提供有利的环境。同时,这两种激素还可以通过调节免疫系统保护胚胎。研究发现,雌二醇 (Estradiol, E2) 和孕酮可通过 STAT3 信号通路以剂量依赖性方式促进 MDSCs 的扩增和激活,激素水平降低则会导致 MDSCs 数量的减少[20]。此外,妊娠期的其他因素如缺氧诱导因子-1α (Hypoxia Inducible Factor-1α,HIF-1α)、人白细胞抗原-G (Human Leukocyte Antigen-G,HLA-G) 及滋养细胞等可能也参与了 MDSCs 的产生[21-24]。妊娠期 MDSCs 通过高表达 Arg1[25] 及产生高水平的 ROS[21] 抑制 T 细胞,或通过下调幼稚T细胞上的L-选择素表达阻止T细胞活化[26],在促进胎儿正常发育和维持母胎免疫耐受中起重要作用 (见图1)。
-
图1 MDSCs在新生儿期的保护作用
-
Figure1 Protective role of MDSCs in the neonatal period
-
胎儿一经娩出,产妇在妊娠期积累的 MDSCs 被迅速消除,而新生儿的 MDSCs 在出生后开始扩增。新生儿期 MDSCs 的产生是一个复杂的免疫调控过程,其产生受到多种因素的影响。在出生后的最初几天,新生儿须适应从无菌的子宫环境过渡到富含微生物的外部世界[1],细胞组成、血浆蛋白浓度以及细胞表型发生剧烈变化[27]。在此期间,调节性免疫细胞在免疫反应中发挥核心作用。不同类型的免疫细胞如 MDSCs、2 型辅助性 T 细胞 (T helper 2 cell,Th2)、调节性 T 细胞 (Regulatory T cell, Treg)、 CD71+ 红细胞 (CD71+ Erythroid Cells,CECs) 和调节性 B 细胞 (Regulatory B cell, Breg) 等在诱导耐受中起重要作用[28-29]。近年,越来越多的研究发现,MDSCs存在于新生儿骨髓、脾及外周血中,是新生儿维持免疫稳态的重要原因之一 (见图1)。研究发现,新生儿中 MDSCs的积累可能与母乳喂养有关。与配方奶喂养的新生儿相比,母乳喂养的新生儿PMN-MDSCs水平升高,免疫抑制功能更强[11]。乳汁中的营养成分乳铁蛋白 (Lactoferrin,LF) 通过激活下游信号通路 NF-κB,从而上调一些重要的免疫调节分子,包括前列腺素 E2 (Prostaglandin E2,PGE2)、一氧化氮、S100A8/ A9等,使MDSCs获得免疫抑制功能,被认为是新生儿 MDSCs 获得免疫抑制活性的主要因素[11,30]。此外,母乳中也发现了大量的 PMN-MDSCs[31-32]。与外周PMN-MDSCs相比,母乳中PMN-MDSCs的 CXCR4、PD-L1、PD-L2 和诱导型一氧化氮合酶 (inducible Nitric Oxide Synthase, iNOS) 的表达增加,对T细胞具有较强的抑制作用,在新生儿期免疫调节中发挥着关键作用[31-32]。此外,孕期不良因素导致的早产也会影响新生儿期 MDSCs 产生。据报道,早产儿和足月儿的免疫系统具有显著差异,早产儿及极低体重新生儿血液中PMN-MDSCs数量显著低于足月儿[11,30],面临更高的新生儿坏死性小肠结肠炎 (Necrotizing Enterocolitis,NEC) 感染风险,可能发生更严重的新生儿炎症。此外,研究发现,用联合抗生素处理孕鼠以清除其肠道菌群后,并不影响新生鼠 MDSCs 的存在或活性抑制[11]。综上所述,在新生儿出生后,主要通过母乳转移或母乳中的营养成分促进新生儿 MDSCs 的积累和免疫抑制功能的增强。
-
1.2 新生儿期MDSCs的特征
-
1.2.1 新生儿期MDSCs表型
-
新生儿期 MDSCs 主要存在于新生儿骨髓、脾及外周血中。在出生后,PMN-MDSCs水平会持续升高至少4-6周,占外周血单个核细胞 (Peripheral Blood Mononuclear Cell, PBMC) 的 2%~4%。此外,MDSCs 的数量与出生后的年龄呈负相关,并在出生后的第2个月进一步降低到成人水平[33-34]。与人类一致,新生小鼠的PMN-MDSCs水平在生命的前3周内保持升高,然后下降到成年水平[11]。
-
目前,对于新生儿期 MDSCs 的识别和鉴定仍然没有特异性的标志。小鼠 MDSCs 可共同表达 Gr-1 (髓系分化标记物) 和 CD11b (α-M 整联蛋白),其中 Gr-1 包含 Ly6G 和 Ly6C 两种表位[18]。人类 MDSCs 缺少 Gr-1 的同源基因,通常表达 CD11b 和 CD33。根据表型及形态学特征,新生儿期MDSCs 可分为两个主要亚群,即 PMN-MDSCs (与中性粒细胞相似) 和M-MDSCs(与单核细胞相似) [11,14-16]。在小鼠中,PMN-MDSCs 表型被定义为 CD11b+ Ly6C-/loLy6G+,具有高侧散射[15,35]。这种表型是中性粒细胞的典型表型,但在一些实验模型中,PMN-MDSCs也可以表达中性粒细胞上通常不存在的标记物,如 CD115、CD16 和 CD244[36-38]。 M-MDSCs的表型被定义为CD11b+ Ly6ChiLy6G-,具有低侧散射[15,39-40],即为炎症单核细胞的典型表型。单核细胞的表面标记物 CD11c及 MHC-Ⅱ类分子不表达在小鼠 M-MDSCs上,使得其可以和单核细胞相鉴别[14,41-42],而小鼠 PMN-MDSCs 与中性粒细胞则难以区分。在人类中,CD11b+ CD14- CD15+ CD66b+ 既可以用来定义PMN-MDSCs,也可以用来定义中性粒细胞[14]。但近年来,Condamine 等[43] 在多种肿瘤组织中观察到高比例的凝集素氧化型低密度脂蛋白受体1 (Lectin Like Ox-LDL Receptor-1,LOX-1) 阳性的中性粒细胞,且这群细胞具有免疫抑制功能,提示标记物 LOX-1 可区分正常中性粒细胞和 PMN-MDSCs。此外,密度梯度离心法也是区分 PMN-MDSC 与中性粒细胞的一种方法,对人体外周血细胞分离后,PMN-MDSCs 主要位于低密度区,而中性粒细胞则分布在高密度区[35]。人类白细胞抗原 (Human Leukocyte Antigen,HLA) 的表达可用来区分 M-MDSCs 和单核细胞,M-MDSCs 表型为 CD11b+ CD14+ CD15- CD33+ HLADR-/low,而单核细胞为 CD11b+ CD14+ CD15- CD33+ HLADR+[14,42]。在脐带血中MDSCs的积聚比成人和儿童更为显著,其被表征为粒细胞标志物 CD66b 或 CD15 阳性, CD33、CD11b 和 IL-4Ra阳性,CD14 和 HLADR-,因此将其归为 PMN-MDSCs;而在脐带血中 M-MDSCs 没有升高[34]。此外,极低出生体重新生儿 (出生体重低于 1 500 g) 脐带血 PMN-MDSCs水平降低[11,34],提示 MDSCs 在新生儿生长发育过程中起重要作用。
-
1.2.2 新生儿期MDSCs功能
-
(1) 免疫抑制功能。免疫抑制是 MDSCs 的主要功能,而抑制 T 细胞是评估 MDSCs 功能的“黄金”标准。MDSCs 的免疫抑制功能主要通过上调 Arg1的表达、iNOS、PGE2、ROS及过氧亚硝酸盐的产生和 Treg的诱导实现[44-50]。精氨酸和色氨酸等必需氨基酸是T细胞功能维持的重要物质,而Arg1 及 iNOS 可通过消耗这些物质形成饥饿微环境,从而抑制T细胞功能,甚至导致其耗竭[51-52]。同时 NO 的产生也参与了 MDSCs 抑制 T 细胞功能的机制,包括抑制 T 细胞中 JAK3 和 STAT5 的功能[53],抑制 MHC-Ⅱ类分子表达[54] 和诱导 T 细胞凋亡[55]。研究发现,S100A9/A8 通过调节前列腺素 E 合酶 (Prostaglandin E Synthase,PTGES) 参与 PGE2 合成,当在小鼠中敲除 PGE2 后,抑制抗原特异性 T 细胞增殖的能力明显降低[11]。MDSCs在与T细胞直接接触时,会产生ROS[56] 和过氧亚硝酸盐[57]。过氧亚硝酸盐会诱导 T 细胞受体和 CD8 分子的硝基化,进而干扰T细胞对抗原肽的特异性识别,使其对抗原特异性刺激无反应[57]。此外,在IFN-γ和IL-10存在的情况下,MDSCs能够在体内诱导 FOXP3+ Treg 细胞的产生发挥免疫抑制作用[58-59]。研究发现, M-MDSCs 和 PMN-MDSCs 的免疫抑制机制不同,且 M-MDSCs比 PMN-MDSCs具有更强的免疫抑制作用。新生儿期 M-MDSCs 通过上调 NOS2 及 NO,以抗原特异性和非特异性方式抑制T细胞的免疫应答[11]。而 PMN-MDSCs 则通过上调 S100A9 和 S100A8,以抗原特异性方式抑制免疫应答,诱导抗原特异性 T 细胞的耐受[11,60]。大部分研究表明, MDSCs 免疫抑制活性的发挥依赖于细胞表面受体和/或释放短期可溶性介质。
-
(2) 抑菌活性及吞噬功能。尽管 MDSCs 主要以其免疫抑制的特性为人们所熟知,然而近年来的研究表明,MDSCs 同时也具有抑菌和吞噬功能。 PMN-MDSCs是新生儿体内主要的扩增群。与成人中性粒细胞相比,新生儿PMN-MDSCs产生更多的PGE2,表达更高水平的 S100A9 和乳铁蛋白水平,并发挥明显的抗菌活性[11]。据报道,新生乳鼠 PMN-MDSCs对大肠杆菌和白色念珠菌的杀伤能力高于成年鼠中性粒细胞,而新生乳鼠 M-MDSCs对大肠杆菌的杀伤力高于成年鼠单核细胞[11]。此外,一项转录组研究比较了新生儿 MDSCs 与肿瘤诱导的 MDSCs,发现这两种情况下的转录组相似,但新生儿 MDSCs 具有很强的杀灭病原体的能力及抗菌活性,并分泌更高水平的组织蛋白酶G、髓过氧化物酶 (Myeloperoxidase,MPO)、中性粒细胞胞质因子 1 (Neutrophil Cytosol Factor 1,NCF1)、脂质运载蛋白2(Lipocalin-2,LCN2)、中性粒细胞弹性蛋白酶 (Neutrophil Elastase,NE)、S100A8/A9 和溶菌酶保护新生儿免受炎症的侵袭[11,61]。研究发现,对新生儿进行乳铁蛋白或腺苷的补充可以增强新生儿期 MDSCs 的抗菌及吞噬功能,进而保护新生儿免受坏死性小肠结肠炎的侵袭[30,62]。然而, MDSCs 抗菌及吞噬功能的具体机制和调控因素尚不清楚,仍需要更深入的研究。
-
2 新生儿期MDSCs的免疫调节作用及机制
-
新生儿期MDSCs通过多种机制调节免疫应答,包括抑制Th1和Th17应答,诱导Th2和Treg,以及调控NK细胞及单核细胞 (见图2)。
-
2.1 抑制Th1和Th17反应
-
研究发现,脐带血 MDSCs 可通过细胞间直接接触抑制Th1和Th17细胞的分化和增殖,同时诱导活化T细胞的凋亡,抑制 IFN-γ的产生,进而调节免疫应答。此过程不依赖于其他细胞类型[63]。当使用抗体清除新生乳鼠MDSCs后,外周T细胞稳态会发生改变,CD4+ /CD8+ T 细胞比率降低,CD62L 表达降低。此外,MDSCs 耗竭甚至影响胸腺中 T 细胞的发育,双阳性胸腺细胞增加,CD4+ /CD8+ 单阳性胸腺细胞比率降低[64]。这些调节作用有助于保持免疫平衡,防止对自身组织的攻击,并为新生儿抵抗感染提供了有效的免疫防御。
-
图2 新生儿期MDSCs的免疫调节机制
-
Figure2 Immunomodulatory mechanism of MDSCs in neonatal period
-
2.2 诱导Th2细胞
-
在新生儿中,基于 Th2 的免疫反应占主导地位。研究发现,脐带血 MDSCs可以通过产生 Arg1 和ROS并诱导细胞间接触增强免疫调节性Th2细胞的诱导[63],进而促进IL-4的产生,降低过度免疫反应的可能性,为新生儿提供更有序的免疫应答。然而,对于这些调节作用的详细机制仍需进一步深入研究。
-
2.3 诱导Treg细胞
-
新生儿 MDSCs 通过 iNOS 及其产物介导 Treg 细胞的积累[63]。此外,Treg可以通过分泌多种抑制性的细胞因子包括 IL-10、TGF-β 等参与新生期免疫稳态的维持。当抗炎免疫反应被激活 (以Th2和 Treg功能亢进为代表),新生儿在暴露于各种抗原、细菌和病毒时不会表现出过度的免疫攻击,提示新生儿期 MDSCs对 Treg 细胞的诱导对新生儿期免疫耐受至关重要。
-
2.4 调控NK细胞和单核细胞
-
如图1 所示,新生儿期 MDSCs 还可以以细胞接触依赖的方式下调 NK细胞穿孔素和颗粒酶 B水平,从而显著抑制细胞毒性 NK 细胞,降低其对 K562靶肿瘤细胞系的细胞毒性[10,44-65]。此外,在脐带血PMN-MDSCs与单核细胞的共培养中发现,单核细胞上 MHC-Ⅱ类分子表达下调,共抑制分子如 PD-L1和 PD-L2上调,从而使 T细胞抗原依赖性和抗原非依赖性增殖能力降低[66]。同时在这项研究中发现,在细菌刺激下,MDSCs 降低了单核细胞吞噬受体 CD11b 和 CD18 的表达和肿瘤坏死因子-α 的产生,但 IL-8 产生增加[66]。基于此,新生儿期单核细胞似乎偏向于脐带血单核细胞中常见的未成熟表型[67]。
-
3 新生儿期 MDSCs 在新生儿炎症中的保护作用
-
在新生儿炎症病程中,机体免疫应答十分复杂。当面对病原菌感染时,机体哨兵细胞上的模式识别受体可以识别病原菌,激活体内炎症反应、释放炎症介质,进而导致患儿出现多脏器功能障碍综合征,对新生儿的健康造成严重影响,甚至导致死亡的发生[68]。多年来,临床上尝试多种治疗策略控制新生儿炎症,但治疗效果并不理想,迫使医疗人员和科研工作者对新生儿败血症的病理生理学过程及其潜在机制进行更深入地研究,探索更为有效的治疗策略。
-
作为短暂存在于新生期且具有很强的杀灭病原体的能力及抗菌活性的细胞,MDSCs已逐渐成为免疫治疗的重要调控靶点。理论上,影响 MDSCs 扩增和功能激活的关键分子可以作为免疫治疗的候选靶点。除此之外,将新生儿 MDSCs 过继传输也是治疗疾病的一种有效途径。目前有研究表明,LF可以通过低密度脂蛋白受体相关蛋白2 (Low Density Lipoprotein Receptor-Related Protein 2,LRP2)受体和NF-κB途径将新生儿中性粒细胞和单核细胞转化为MDSCs[30,69]。将LF诱导的MDSCs (LF-MDSCs) 过继转移给患有 NEC 的小鼠可以显著缓解疾病症状,延长小鼠的生存时间[30]。同样,肠道三叶因子 (Trefoil Factor 3,TFF3) 是一种属于三叶肽家族的小肽,由肠杯状细胞分泌,参与细胞迁移、细胞分化、抗凋亡和伤口愈合,在肠黏膜修复中起重要作用[70-71]。近年研究发现,用TFF3体外处理小鼠骨髓细胞和人外周血单个核细胞可以通过 PGE2和 NF-κB/COX2 信号传导激活 PMN-MDSCs[72]。使用 TFF3 处理或将 TFF3 诱导的 PMN-MDSCs (TFF3-MDSCs)过继转移到NEC小鼠可促进PMN-MDSCs 在肠道固有层中积聚,进而缓解肠道炎症、减少细菌负荷,使小鼠存活期延长[72]。同时,在卵清蛋白致敏的肺炎模型中,过继转移新生儿 MDSCs 能够显著缓解小鼠肺部炎症症状[11]。此外,腺苷通过结合PMN-MDSCs表面的A2B受体,引发下游cAMPNF-κB信号通路的活化,促进PMN-MDSCs迁移信号通路的表达,增加骨髓和脾中 MDSCs 的水平,同时增强MDSCs的免疫抑制功能及抗菌能力[62],揭示腺苷在NEC疾病中具有潜在的治疗价值。最新研究发现,二十二碳六烯酸 (Docosahexaenoic Acid, DHA) 可以调控 PPARγ 恢复孕期节律紊乱导致的 PMN-MDSCs 线粒体功能障碍,恢复新生期 PMNMDSCs免疫抑制能力,提高PMN-MDSCs的杀菌和吞噬能力,进而缓解新生期NEC疾病症状[73]。这些研究结果强调了新生儿 MDSCs 作为新生儿期炎症调节剂的潜在保护作用 (见图1),为通过 MDSCs 治疗新生儿炎症性疾病提供了新思路。
-
除了保护作用外,MDSCs 还可能在出生后免疫发育中发挥有害的调节作用,使新生儿更容易感染。有研究发现,新生儿的MDSCs的可促进IL-27 的表达,从而抑制巨噬细胞功能,加入 IL-27中和抗体后可促进巨噬细胞对细菌杀伤作用[74]。此外,研究发现,早产儿脐带血中 M-MDSCs数量显著增加,且与 E2 和胎盘组织中过表达的雌激素受体 α 呈正相关,表明在早产儿中E2促进M-MDSCs的异常积累[75]。同时,早产儿 M-MDSCs的免疫抑制活性会导致总T细胞及其亚型显著减少,这可能会打破早产儿免疫平衡[75]。因此,早产儿较足月新生儿存在更高感染风险的潜在原因之一是 M-MDSCs的异常积累,但具体的相关机制有待进一步研究。
-
4 总结
-
大量研究表明,MDSCs 存在于一些包括新生儿期和妊娠期等的正常生理环境中,发挥强大的免疫抑制作用,且具有很强的杀灭病原体的能力及抗菌活性。在新生儿期,MDSCs 使新生儿期免疫反应偏向于Th2并介导抑制性免疫反应,通过细胞间接触来抑制 Th1 和 Th17 细胞的分化和增殖,同时产生 Arg1 和 ROS 并诱导 Th2 和 Treg 细胞的生成。作为一种新兴的免疫抑制性细胞,MDSCs 已逐渐成为免疫治疗的重要调控靶点,尤其在针对 MDSCs 为靶点的新生儿炎症的免疫治疗方面亦取得了一定的进展。然而,目前对新生儿 MDSCs 的认知还刚刚起步。MDSCs在生命早期的免疫表型、 MDSCs 发育调控的机制及其在新生儿炎症中的具体调控机制仍需更多的基础和临床研究来确定。
-
参考文献
-
[1] KUZNIEWICZ M W,MUKHOPADHYAY S,LI S,et al.Time to positivity of neonatal blood cultures for earlyonset sepsis[J].The Pediatric Infectious Disease Journal,2020,39(7):634-640.
-
[2] ALTUNHAN H,ANNAGÜR A,ÖRS R,et al.Procalcitonin measurement at 24 hours of age may be helpful in the prompt diagnosis of early-onset neonatal sepsis[J].International Journal of Infectious Diseases,2011,15(12):e854-e858.
-
[3] GABRILOVICH D I.Myeloid-derived suppressor cells [J].Cancer Immunology Research,2017,5(1):3-8.
-
[4] MARVEL D,GABRILOVICH D I.Myeloid-derived suppressor cells in the tumor microenvironment:Expect the unexpected[J].Journal of Clinical Investigation,2015,125(9):3356-3364.
-
[5] 雷爱华,周洁.髓系衍生的抑制性细胞与肿瘤免疫耐受关系的研究进展[J].生物化学与生物物理进展,2014,41(1):58-68.
-
[6] LEI A,YANG Q,LI X,et al.Atorvastatin promotes the expansion of myeloid-derived suppressor cells and attenuates murine colitis[J].Immunology,2016,149(4):432-446.
-
[7] OSTRAND-ROSENBERG S,LAMB T J,PAWELEC G.Here,there,and everywhere:Myeloid-derived suppressor cells in immunology[J].The Journal of Immunology,2023,210(9):1183-1197.
-
[8] VEGLIA F,SANSEVIERO E,GABRILOVICH D I.Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity[J].Nature Reviews Immunology,2021,21(8):485-498.
-
[9] KÖSTLIN N,HOFSTÄDTER K,OSTERMEIR A L,et al.Granulocytic myeloid-derived suppressor cells accumulate in human placenta and polarize toward a Th2 phenotype[J].Journal of Immunology,2016,196(3):1132-1145.
-
[10] RIEBER N,GILLE C,KÖSTLIN N,et al.Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses[J].Clinical and Experimental Immunology,2013,174(1):45-52.
-
[11] HE Y M,LI X,PEREGO M,et al.Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation[J].Nature Medicine,2018,24(2):224-231.
-
[12] FAINARU O,HANTISTEANU S,HALLAK M.Immature myeloid cells accumulate in mouse placenta and promote angiogenesis[J].American Journal of Obstetrics and Gynecology,2011,204(6):e518-e523.
-
[13] PAN T,LIU Y,ZHONG L M,et al.Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice[J].Journal of Leukocyte Biology,2016,100(3):499-511.
-
[14] 阮韦淑怡.PD-L1/PD-1 介导的髓系抑制性细胞对脓毒症小鼠的免疫调控作用研究[D].杭州:浙江大学,2021.
-
[15] VEGLIA F,PEREGO M,GABRILOVICH D.Myeloidderived suppressor cells coming of age[J].Nature Immunology,2018,19(2):108-119.
-
[16] BRONTE V,BRANDAU S,CHEN S H,et al.Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards[J].Nature Communications,2016,7(1):12150.
-
[17] NAIR R R,SINHA P,KHANNA A,et al.Reduced myeloid-derived suppressor cells in the blood and endo‐metrium is associated with early miscarriage[J].American Journal of Reproductive Immunology,2015,73(6):479-486.
-
[18] 陈秀荣,叶春雨,邱凌钰,等.母胎界面髓源抑制性细胞的研究进展[J].中国计划生育和妇产科,2023,15(2):46-50.
-
[19] 黄丹,崔树娜.髓源性抑制细胞在母胎界面的免疫调节作用[J].现代免疫学,2021,41(6):509-514,519.
-
[20] PAN T,ZHONG L,WU S,et al.17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription(STAT)-3 signalling in human pregnancy[J].Clinical and Experimental Immunology,2016,185(1):86-97.
-
[21] KÖSTLIN N,OSTERMEIR A L,SPRING B,et al.HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4[J].European Journal of Immunology,2017,47(2):374-384.
-
[22] KÖSTLIN-GILLE N,DIETZ S,SCHWARZ J,et al.HIF1α-deficiency in myeloid cells leads to a disturbed accumulation of myeloid derived suppressor cells(MDSC)during pregnancy and to an increased abortion rate in mice[J].Frontiers in Immunology,2019,10:161.
-
[23] NOMAN M Z,DESANTIS G,JANJI B,et al.PD-L1 is a novel direct target of HIF-1α,and its blockade under hypoxia enhanced MDSC-mediated T cell activation[J].The Journal of Experimental Medicine,2014,211(5):781-790.
-
[24] SCHWARZ J,RÜHLE J,STEPHAN K,et al.HIF-1α targeted deletion in myeloid cells decreases MDSC accumulation and alters microbiome in neonatal mice[J].European Journal of Immunology,2023,53(7):e2250144.
-
[25] KANG X,ZHANG X,LIU Z,et al.Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+ CD25- T cells by activation of the TGF-β/β-catenin pathway[J].Molecular Human Reproduction,2016,22(7):499-511.
-
[26] OSTRAND-ROSENBERG S,SINHA P,FIGLEY C,et al.Frontline science:Myeloid-derived suppressor cells(MDSCs)facilitate maternal-fetal tolerance in mice[J].Journal of Leukocyte Biology,2017,101(5):1091-1101.
-
[27] OLIN A,HENCKEL E,CHEN Y,et al.Stereotypic immune system development in newborn children[J].Cell,2018,174(5):1277-1292.e14.
-
[28] ZHANG X,ZHIVAKI D,LO-MAN R.Unique aspects of the perinatal immune system[J].Nature Reviews Immunology,2017,17(8):495-507.
-
[29] NASRI F,DOROUDCHI M,NAMAVAR JAHROMI B,et al.T helper cells profile and CD4+ CD25+ Foxp3+ regulatory T cells in polycystic ovary syndrome[J].Iranian Journal of Immunology,2018,15(3):175-185.
-
[30] LIU Y,PEREGO M,XIAO Q,et al.Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice[J].Journal of Clinical Investigation,2019,129(10):4261-4275.
-
[31] KÖSTLIN N,SCHOETENSACK C,SCHWARZ J,et al.Granulocytic myeloid-derived suppressor cells(GRMDSC)in breast milk(BM);GR-MDSC accumulate in human BM and modulate T-cell and monocyte function [J].Frontiers in Immunology,2018,9:1098.
-
[32] KÖSTLIN-GILLE N,FLAIG L A,GINZEL M,et al.Granulocytic myeloid-derived suppressor cells in breast milk(BM-MDSC)correlate with gestational age and postnatal age and are influenced by infant's sex[J].Nutrients,2020,12(9):2571.
-
[33] GERVASSI A,LEJARCEGUI N,DROSS S,et al.Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses [J].PLoS One,2014,9(9):e107816.
-
[34] SCHWARZ J,SCHECKENBACH V,KUGEL H,et al.Granulocytic myeloid-derived suppressor cells(GRMDSC)accumulate in cord blood of preterm infants and remain elevated during the neonatal period[J].Clinical and Experimental Immunology,2018,191(3):328-337.
-
[35] DAMUZZO V,PINTON L,DESANTIS G,et al.Complexity and challenges in defining myeloid-derived suppressor cells[J].Cytometry Part B Clinical Cytometry,2015,88(2):77-91.
-
[36] CONDAMINE T,GABRILOVICH D I.Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function[J].Trends in Immunology,2011,32(1):19-25.
-
[37] CASSETTA L,BAEKKEVOLD E S,BRANDAU S,et al.Deciphering myeloid-derived suppressor cells:Isolation and markers in humans,mice and non-human primates[J].Cancer Immunology Immunotherapy,2019,68(4):687-697.
-
[38] GALLINA G,DOLCETTI L,SERAFINI P,et al.Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells[J].The Journal of Clinical Investigation,2006,116(10):2777-2790.
-
[39] MOVAHEDI K,GUILLIAMS M,VAN DEN BOSSCHE J,et al.Identification of discrete tumor-induced myeloidderived suppressor cell subpopulations with distinct T cell-suppressive activity[J].Blood,2008,111(8):4233-4244.
-
[40] YOUN J I,NAGARAJ S,COLLAZO M,et al.Subsets of myeloid-derived suppressor cells in tumor-bearing mice [J].Journal of Immunology,2008,181(8):5791-5802.
-
[41] DOLCETTI L,PERANZONI E,UGEL S,et al.Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF[J].European Journal of Immunology,2010,40(1):22-35.
-
[42] CONDAMINE T,MASTIO J,GABRILOVICH D I.Transcriptional regulation of myeloid-derived suppressor cells[J].Journal of Leukocyte Biology,2015,98(6):913-922.
-
[43] CONDAMINE T,DOMINGUEZ G A,YOUN J I,et al.Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients[J].Science Immunology,2016,1(2):aaf8943.
-
[44] ELKABETS M,RIBEIRO V S G,DINARELLO C A,et al.IL-1β regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function [J].European Journal of Immunology,2010,40(12):3347-3357.
-
[45] TALMADGE J E,GABRILOVICH D I.History of myeloid-derived suppressor cells[J].Nature Reviews Cancer,2013,13(10):739-752.
-
[46] HU C E,GAN J,ZHANG R D,et al.Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function[J].Scandinavian Journal of Gastroenterology,2011,46(2):156-164.
-
[47] MAO Y,POSCHKE I,WENNERBERG E,et al.Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms[J].Cancer Research,2013,73(13):3877-3887.
-
[48] SRIVASTAVA M K,SINHA P,CLEMENTS V K,et al.Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine[J].Cancer Research,2010,70(1):68-77.
-
[49] HANSON E M,CLEMENTS V K,SINHA P,et al.Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells[J].Journal of Immunology,2009,183(2):937-944.
-
[50] LINDAU D,GIELEN P,KROESEN M,et al.The immunosuppressive tumour network:Myeloid-derived suppressor cells,regulatory T cells and natural killer T cells[J].Immunology,2013,138(2):105-115.
-
[51] RODRIGUEZ P C,ZEA A H,CULOTTA K S,et al.Regulation of T cell receptor CD3zeta chain expression by L-arginine[J].The Journal of Biological Chemistry,2002,277(24):21123-21129.
-
[52] RODRIGUEZ P C,HERNANDEZ C P,QUICENO D,et al.Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma[J].The Journal of Experimental Medicine,2005,202(7):931-939.
-
[53] BINGISSER R M,TILBROOK P A,HOLT P G,et al.Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway[J].Journal of Immunology,1998,160(12):5729-5734.
-
[54] HARARI O,LIAO J K.Inhibition of MHC Ⅱ gene transcription by nitric oxide and antioxidants[J].Current Pharmaceutical Design,2004,10(8):893-898.
-
[55] RIVOLTINI L,CARRABBA M,HUBER V,et al.Immunity to cancer:Attack and escape in T lymphocytetumor cell interaction[J].Immunological Reviews,2002,188:97-113.
-
[56] KUSMARTSEV S,NEFEDOVA Y,YODER D,et al.Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J].Journal of Immunology,2004,172(2):989-999.
-
[57] KÄRRE K.MHC gene control of the natural killer system at the level of the target and the host[J].Seminars in Cancer Biology,1991,2(5):295-309.
-
[58] HUANG B,PAN P Y,LI Q,et al.Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumorinduced T regulatory cells and T-cell anergy in tumorbearing host[J].Cancer Research,2006,66(2):1123-1131.
-
[59] YANG R,CAI Z,ZHANG Y,et al.CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+ CD11b+ myeloid cells[J].Cancer Research,2006,66(13):6807-6815.
-
[60] GABRILOVICH D I,OSTRAND-ROSENBERG S,BRONTE V.Coordinated regulation of myeloid cells by tumours[J].Nature Reviews Immunology,2012,12(4):253-268.
-
[61] LEIBER A,SCHWARZ J,KÖSTLIN N,et al.Neonatal myeloid derived suppressor cells show reduced apoptosis and immunosuppressive activity upon infection with Escherichia coli[J].European Journal of Immunology,2017,47(6):1009-1021.
-
[62] ZHOU D,YAO M,ZHANG L,et al.Adenosine alleviates necrotizing enterocolitis by enhancing the immunosuppressive function of myeloid-derived suppressor cells in newborns[J].The Journal of Immunology,2022,209(2):401-411.
-
[63] KÖSTLIN N,VOGELMANN M,SPRING B,et al.Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an antiinflammatory phenotype[J].Immunology,2017,152(1):89-101.
-
[64] RÜHLE J,GINZEL M,DIETZ S,et al.Depletion ofLy6G-expressing neutrophilic cells leads to altered peripheral T-cell homeostasis and thymic development in neonatal mice[J].International Journal of Molecular Sciences,2023,24(9):7763.
-
[65] REN J,ZENG W,TIAN F,et al.Myeloid-derived suppressor cells depletion may cause pregnancy loss via upregulating the cytotoxicity of decidual natural killer cells[J].American Journal of Reproductive Immunology,2019,81(4):e13099.
-
[66] DIETZ S,SCHWARZ J,VOGELMANN M,et al.Cord blood granulocytic myeloid-derived suppressor cells impair monocyte T cell stimulatory capacity and response to bacterial stimulation[J].Pediatric Research,2019,86(5):608-615.
-
[67] KÖSTLIN-GILLE N,GILLE C.Myeloid-derived suppressor cells in pregnancy and the neonatal period[J].Frontiers in Immunology,2020,11:584712.
-
[68] BEDNARZ-MISA I,MIERZCHALA-PASIERB M,LESNIK P,et al.Cardiovascular insufficiency,abdominal sepsis,and patients' age are associated with decreased paraoxonase-1(PON1)activity in critically Ⅲ patients with multiple organ dysfunction syndrome(MODS)[J].Disease Markers,2019,2019:1314623.
-
[69] JABLONSKA J,BRANDAU S.PMN-MDSC in newborns:Regulation of the regulators[J].Journal of Leukocyte Biology,2022,112(5):949-950.
-
[70] KRÜGER K,SCHMID S,PAULSEN F,et al.Trefoil factor 3(TFF3)is involved in cell migration for skeletal repair[J].International Journal of Molecular Sciences,2019,20(17):4277.
-
[71] GUO J,XU L,TENG X,et al.MicroRNA-7-5p regulates the proliferation and migration of intestinal epithelial cells by targeting trefoil factor 3 via inhibiting the phosphoinositide 3-kinase/Akt signalling pathway[J].International Journal of Molecular Medicine,2017,40(5):1435-1443.
-
[72] LIU J,YANG Q,CHEN Z,et al.TFF3 mediates the NFκB/COX2 pathway to regulate PMN-MDSCs activation and protect against necrotizing enterocolitis[J].European Journal of Immunology,2021,51(5):1110-1125.
-
[73] CUI Z H,XU H X,WU F,et al.Maternal circadian rhythm disruption affects neonatal inflammation via metabolic reprograming of myeloid cells[J].Nature Metabolism,2024,6:899-913.
-
[74] GLEAVE PARSON M,GRIMMETT J,VANCE J K,et al.Murine myeloid-derived suppressor cells are a source of elevated levels of interleukin-27 in early life and compromise control of bacterial infection[J].Immunology and Cell Biology,2019,97(5):445-456.
-
[75] BUDHWAR S,VERMA R,VERMA P,et al.Estradiol correlates with the accumulation of monocytic myeloidderived suppressor cells in pre-term birth:A possible explanation of immune suppression in pre-term babies[J].Journal of Reproductive Immunology,2021,147:103350.
-
摘要
在出生后,新生儿需立即应对肠道菌群的定植及大量外界抗原的刺激,因而维持免疫稳态对新生儿健康至关重要。髓源抑制性细胞是一群髓系来源且具有免疫抑制功能的固有免疫细胞,在促进肿瘤进展过程中发挥重要作用。近年研究发现,新生儿期髓源抑制性细胞具有重要的免疫保护功能。相比于肿瘤髓源抑制性细胞,新生儿髓源抑制性细胞显示出强大的抗菌活性,在预防新生儿炎症反应中发挥重要作用。本文总结了新生儿期髓源抑制性细胞的产生及特征,新生儿期髓源抑制性细胞的免疫调节作用和机制,以及其在新生儿炎症性疾病中的作用,以期为新生儿炎症性疾病的免疫治疗提供新策略。
Abstract
Maintaining immune homeostasis is crucial for neonatal health following birth, as neonates encounter the colonization of gut flora and a plethora of external antigens. Myeloid-derived suppressor cells (MDSCs), a group of innate immune cells of myeloid origin with immunosuppressive functions, are known for their significant role in promoting tumor progression. Recent studies, however, have highlighted the critical immunoprotective functions of neonatal MDSCs. Unlike tumor-associated MDSCs, neonatal MDSCs exhibit strong antibacterial activity and play a vital role in preventing inflammatory responses in newborns. This review provides a comprehensive overview of the etiology, characteristics, immunomodulatory functions, and regulatory mechanisms of neonatal MDSCs, emphasizing their role in neonatal inflammatory diseases. This insight aims to provide new strategies for the immunotherapy of neonatal inflammatory diseases.