-
0 前言
-
作为一种复杂且严重的疾病,肿瘤的治疗一直是医学界的重要挑战之一。近年来,随着放疗和化疗技术的改进、靶向治疗的发展、免疫治疗的突破、个体化治疗策略的兴起、早期诊断和预防策略的加强,肿瘤治疗体系得到了前所未有的提升。尽管如此,如何进一步提高原有治疗策略的效果,扩大治疗适用人群,寻找新的治疗靶标仍是本领域的重要挑战。肿瘤的发生和发展不仅受到肿瘤细胞自身的遗传变异影响,还受到肿瘤微环境的调控[1]。肿瘤免疫微环境作为癌症治疗领域的热点,其重要性日益凸显。值得说明的是,肿瘤微环境不仅能改变治疗的结局走向,也受到治疗过程的影响而不断重整和适应,两者间存在着复杂的相互调控关系[2-3]。因此,深入研究肿瘤免疫微环境与治疗的相互作用显得尤为重要。厘清这些内容对基于不同肿瘤患者的免疫微环境特征进行精准治疗,提高治疗效果,减少治疗的不良反应具有重要的指导意义。本文将系统综述肿瘤免疫微环境与治疗相互作用的最新研究进展,以期为深入理解肿瘤生物学、指导临床实践以及开发新的治疗策略提供参考和启示。
-
1 原发肿瘤免疫微环境对治疗的影响
-
肿瘤是癌细胞与周围间质微环境相互作用的结果[4]。免疫细胞作为重要的间质细胞,不仅决定了肿瘤的进展/退化,也影响了患者对治疗的响应[5]。因此,厘清原发肿瘤中免疫微环境的组成、功能特征及其对治疗的影响,将为克服原发性肿瘤耐药的临床应对策略提供新的研究思路和潜在靶点。
-
1.1 肿瘤浸润T细胞
-
肿瘤治疗的长期有效依赖于机体免疫系统对癌细胞的识别和杀灭[6]。T细胞作为适应性免疫的重要效应细胞,是机体免疫系统杀伤肿瘤的“主力军”。细胞毒性 T 淋巴细胞 (Cytotoxic T Lymphocyte, CTL) 可通过释放穿孔素、颗粒酶和其膜表面的凋亡相关因子配体 (Fas Ligand,FasL) 等效应分子直接杀伤肿瘤细胞。值得注意的是,新近研究发现,除直接杀伤外,CTL还能诱发肿瘤免疫原性死亡,放大级联免疫反应来加强抗肿瘤效应。例如, CTL 能通过分泌Ⅱ型干扰素 (Interferon-gamma, IFN-γ)促进肿瘤发生酰基辅酶A 合成酶长链家族成员 4 (Acyl-CoA Synthetase Long-Chain Family Member 4,ACSL4) 依赖性铁死亡,进而导致肿瘤抗原释放和扩散,促进肿瘤免疫[7];CTL 释放的颗粒酶 A 可诱发肿瘤细胞GSDMB介导的焦亡,进而增强其抗肿瘤效应,提高免疫治疗疗效[8]。与此相应, CTL细胞高度浸润的患者具有更高的免疫治疗响应率[9]。目前,靶向恢复或增强T细胞抗肿瘤功能的免疫治疗在基础研究和临床实践中均取得较好的进展。
-
值得注意的是,CTL 的功能在肿瘤中受到多种机制的限制,包括肿瘤的代谢环境,如乳酸堆积、氨基酸缺乏和低氧环境常导致 CTL 功能失常[10];肿瘤微环境中免疫调节分子如前列腺素 E2 (Prostaglandin E2,PGE2)、吲哚胺2,3-双加氧化酶 (Indoleamine2,3-dioxygenase,IDO) 等负调控CTL 的抗肿瘤功能[11-13];肿瘤内部改变如表观遗传等可抑制抗原递呈信号及趋化因子的表达,从而导致 CTL 浸润减少和功能缺失[14-15]。这导致单一的免疫检查点治疗在肿瘤治疗中效果不佳,靶向肿瘤中诱导CTL失能的关键分子有望提高免疫治疗的疗效。
-
与 CTL 不同,辅助性 T 细胞 (T helper cell, Th) 可通过增强抗原递呈促进CTL效应,抑制免疫抑制细胞,以及辅助B细胞和抗体介导的免疫反应,从而发挥抗肿瘤效应。然而,近年的研究表明,Th 可在肿瘤中抗原递呈细胞 (Antigen Presenting Cell, APC) 的刺激下增殖分化,形成Th1、Th17、Th22 和 Tfh 等亚群,促进肿瘤进展和治疗耐受[16-18]。与此相应,IL-22 可作为标志物,预测肝癌患者的血管生成和肿瘤复发[17]。随着单细胞测序技术的出现和普及,新近研究也相继鉴定出一些促肿瘤进展和耐药的T细胞亚群。例如,在非小细胞肺癌 (NonSmall Cell Lung Cancer,NSCLC)、黑色素瘤和结肠癌等多种肿瘤中新发现一群 CD4+ CXCR5+ GITR+ 滤泡调节性 T 细胞 (follicular Regulatory T cell, Tfr),它们可抑制 GC 依赖的 B 细胞反应及抗原特异 T 细胞的产生,是预测肿瘤免疫疗效的重要指标[19]。因此,进一步鉴定出原发微环境中T细胞的亚群组成及功能,对肿瘤治疗疗效的预测和提高具有重要意义。
-
1.2 肿瘤浸润B细胞
-
除了 T细胞,B细胞也是重要的适应性免疫细胞,其一方面能通过分泌IgG类抗体促进抗体依赖的细胞介导的细胞毒作用 (Antibody-Dependent Cell-mediated Cytotoxicity,ADCC)、调理作用来杀伤和清除癌细胞,同时还可通过抗原递呈促进效应 T细胞的抗肿瘤功能[20]。与此相应,当 B细胞与 T 细胞在肿瘤中形成紧密接触的三级淋巴结构时,黑色素瘤、肾癌等多种肿瘤的免疫治疗的疗效更佳[21-23]。然而,肿瘤中并非所有 B 细胞都发挥抗肿瘤功能。例如,肝癌组织中浸润着一群 PD-1high的调节性 B 细胞 (Regulatory B cell,Breg),其可接受 PD-L1信号产生 IL-10诱导 CTL失能,致使疾病进展;与此相应,PD-1high Breg 的数量可作为预测肝癌早期复发的指标[24]。此外,亮氨酸 tRNA 合成酶 2 (Leucyl tRNA Synthetase2, LARS) high Breg 细胞也在结直肠中被鉴定出来,其大量浸润与患者的不良预后密切正相关[25]。事实上,除了Breg,浆细胞也在多种肿瘤中大量存在,并发挥独特的促肿瘤效应。例如,原发肝癌中富集的IgG+ 浆细胞可诱导促肿瘤巨噬细胞的形成,进而削弱了表观遗传重塑治疗的疗效;而肠癌肝转移组织中则浸润大量的 IgA+ 浆细胞,它们通过促进粒系髓源抑制性细胞的活化,来塑造抑制性免疫微环境帮助肿瘤转移[26-27]。因此,进一步阐明原发性肿瘤微环境中 B 细胞的亚群组成,鉴定出促使其免疫功能发生转变的关键分子和机制,对提高肿瘤现有治疗手段的疗效及开发新的治疗靶点具有重要意义。
-
1.3 肿瘤相关巨噬细胞
-
巨噬细胞作为连接机体先天性免疫和适应性免疫的桥梁,在肿瘤治疗中发挥重要作用。然而,在实体瘤组织中,巨噬细胞的数量多与肿瘤患者的术后生存呈负相关[28]。近年的研究表明,巨噬细胞在肿瘤微环境的影响下可极化为抑制表型并诱导免疫逃逸,从而削弱 PD-1/PD-L1治疗和 CAR-T治疗的疗效[29-30]。事实上,除可诱导免疫逃逸外,巨噬细胞作为肿瘤局部炎症反应的重要来源,还能参与调控肿瘤的恶性转化来促进治疗抵抗。例如,巨噬细胞炎症可诱导 PD-L1+ 癌细胞的形成,并赋予其抵抗凋亡、易转移和促血管生成的能力,进而抵抗化疗和免疫治疗的疗效[31-32]。
-
新近研究发现,选择性器官转移可系统性降低免疫疗法的疗效。例如,一项针对转移性黑色素瘤和肺癌患者免疫治疗反应情况的回顾性分析揭示,相较于其他器官转移,具有肝转移的患者免疫治疗的应答率较低,总体生存期也更短[33]。机制研究表明,肝作为免疫耐受的器官,在转移瘤形成的过程中可通过巨噬细胞 FasL 依赖的方式诱导 T 细胞克隆清除。这种肝固有的免疫耐受特性赋予了局部转移瘤的生长优势,最终导致治疗耐受及系统性肿瘤超进展 (Hyperprogressive Disease,HPD) [33]。与之类似的研究发现,腹膜等腔隙中特有的 Tim4+ 驻留型巨噬细胞通过与其配体磷脂酰丝氨酸 (Phosphatidylserine,PS) 结合,对 CTL 细胞造成功能性阻隔,并抑制其增殖,以阻碍抗肿瘤免疫反应,导致肿瘤的浆液性体腔转移,最终削弱免疫治疗的疗效[34]。由此可见,治疗情况下,机体维持稳态的固有免疫耐受机制可转化为肿瘤转移或耐药的逃生通道,进而成为限制疗效的“阿喀琉斯之踵”。
-
1.4 肿瘤相关粒细胞
-
中性粒细胞也是构成肿瘤局部炎症的重要来源,其可通过诱导血管生成、加强肿瘤上皮-间质转化和耐药性,进而促进肿瘤进展[35]。新近研究也发现,中性粒细胞可通过释放胞外诱捕网 (Neutrophil Extracellular Traps, NETs) 的独特结构,递送胞内物质到微环境,进而加剧局部炎症反应,导致肿瘤的转移[36]。与此相应,肝癌中粒细胞的数量与患者的生存时间负相关,且其高度浸润能够预测晚期肝癌患者对免疫治疗的较差响应性[37]。可见,肿瘤细胞塑造组织免疫微环境,同时也实现了对自身恶性生物学行为的塑造,从而抑制多种肿瘤策略的疗效。
-
令人欣慰的是,肿瘤中并非所有粒细胞都发挥促肿瘤发展的功能。研究表明,髓系细胞作为重要的固有免疫细胞,可通过吞噬并杀死肿瘤细胞来增强效应 T 细胞反应,促进肿瘤的消退[38]。新近一项研究,通过分析 17 种癌症类型中的中性粒细胞单细胞测序数据,鉴定出一群具抗原递呈能力的 HLA-DR+ CD74+ 中性粒细胞,它们可作为肿瘤免疫响应的有效预测指标,并在治疗中发挥增敏作用[38]。类似的研究发现,在接受三联免疫治疗的结直肠癌和黑色素瘤中,粒细胞可在活化 T 细胞的作用下募集并活化产生诱导型一氧化氮合酶 (inducible Nitric Oxide Synthase, iNOS) 杀伤肿瘤抗原丢失变异的癌细胞,从而增强治疗的疗效;其富集也提示患者更好的预后[39]。因此,选择性干预或靶向中性粒细胞的亚群偏向有望重建机体的抗肿瘤免疫反应网络。
-
1.5 肿瘤基质
-
肿瘤基质是肿瘤微环境的重要组成部分,其特有的生物学特征,如组织缺氧和酸中毒、间质高压形成、大量生长因子和蛋白水解酶的产生等,在肿瘤的生长、增殖、侵袭、转移和耐药的过程中发挥重要作用,被认为是肿瘤治疗的重要靶标[40]。除了直接作用于癌细胞,肿瘤基质还可通过免疫细胞促进疾病进展和影响疗效[41]。具体来说,肿瘤基质中的成纤维细胞和细胞外基质成分如胶原和透明质酸等能形成物理屏障,限制免疫细胞的渗透和接触癌细胞,从而诱导肿瘤的免疫逃逸[42];肿瘤基质还能通过改变代谢环境 (如低氧和高乳酸浓度) 抑制T 细胞功能,并促进调节性 T 细胞 (Regulatory T cell,Treg) 和髓源抑制性细胞 (Myeloid-Derived Suppressor Cells,MDSCs) 等免疫抑制细胞的活性[43]。新近研究也发现,肿瘤基质微环境也可通过机械应力介导的 Piezo1-Osr2 轴诱导 T 细胞耗竭,抑制免疫疗法的效果[44]。目前,已有多项靶向肿瘤基质 (如抗纤维化药物、靶向TGF-β信号等) 联合免疫治疗在临床应用中展现出巨大的潜力[45-47]。因此,全面评估肿瘤基质、免疫微环境特征对治疗方式的选择及治疗方案的优化有着重要的意义。
-
2 肿瘤治疗对免疫微环境的影响
-
值得注意的是,肿瘤免疫微环境在治疗过程中也会发生变化,这些变化可能促进肿瘤的消退,但也可能诱导治疗耐药甚至导致疾病的超进展。因此,深入解析不同临床治疗手段对肿瘤微环境中各免疫成分的具体影响 (见表1),不仅有助于更全面地理解肿瘤治疗响应或耐药的机制,还为设计更精准高效的治疗策略提供新的靶点或新的联合治疗思路。
-
2.1 放化疗对肿瘤免疫微环境的影响
-
放射治疗 (放疗) 指利用高能量的电磁波 (X、γ射线等) 或粒子束 (质子、中子等) 照射来杀灭肿瘤的治疗方式;化学治疗 (化疗) 则一般通过口服或注射药物来杀死癌细胞或抑制其生长和扩散,主要药物包括:阻断细胞周期的碱化剂、抑制 DNA 复制的铂类和蒽环类药物、干扰细胞代谢的 5-氟尿嘧啶及抑制微管组装的紫杉醇等。尽管手段不同,这两种治疗均直接通过杀灭癌细胞来治疗肿瘤。研究表明,放/化疗杀伤肿瘤细胞的同时,可释放大量的肿瘤抗原,这些抗原被 APC 摄取,进而引发CTL的抗肿瘤效应[48]。而该过程中释放的损伤相关模式分子 (Damage-Associated Molecular Pattern,DAMP) 如钙网蛋白 (Calreticulin,CRT)、高迁移率族蛋白 B1 (High Mobility Group Box-1 Protein,HMGB1)、ATP 等能加强 APC 的吞噬作用,从而促进其抗原递呈,诱导 CTL 的抗肿瘤效应[49],即治疗的免疫原性细胞死亡效应。除了释放肿瘤抗原,放/化疗还可通过促进肿瘤细胞以外泌体方式输送免疫原,进而诱导髓系细胞 IFN-Ⅰ反应,辅助激活 CTL[50]。同时,放/化疗还可促进肿瘤细胞线粒体不稳定增加其MHC-Ⅰ类分子的表达,进而提高肿瘤细胞被 CTL 识别和杀伤的可能。新近研究发现,有效化疗可诱导出多群 B 细胞亚群,例如鼻咽癌中吉西他滨联合顺铂化疗诱导的CD27+ IgD+ IgM+ 先天样B细胞亚群以及乳腺癌中新辅助化疗诱导的一群以 ICOSL+ CR2highIL-10-CD20+ CD38+ CD27+ IgAIgD为特征的 B 细胞。尽管表型不尽相同,这些B细胞均能促进三级淋巴结构的形成,并通过ICOSL-ICOS轴最终激活CTL的抗肿瘤杀伤功能,促进机体对肿瘤的长期免疫保护。这些B细胞亚群的丰度不仅能作为预测肿瘤患者化疗响应性的生物标记物,更可为进一步指导肿瘤的精准化疗和免疫治疗提供重要依据[51-52]。
-
放/化疗介导的过量抗原暴露,也可能形成抑制型免疫微环境,从而导致免疫耐受。例如,放/ 化疗激活髓系细胞功能的同时,会诱导 PD-L1、 IDO1 和 SIRPα 等免疫抑制分子的上调,促进免疫耗竭[53];放疗后肿瘤细胞可分泌大量 CCL2 诱导 CCR2+ Treg 和单核细胞,促进抑制性微环境的产生[54]。除了诱导免疫逃逸,过量的放/化疗引发的免疫炎症还可参与调控肿瘤的恶性转化来诱导治疗抵抗。例如,紫杉醇类化疗在杀伤肿瘤细胞的同时会损伤基质细胞,使其释放 IL-6 和粒细胞集落刺激因子 (Granulocyte Colony-Stimulating Factor, G-CSF) 等细胞因子,进而通过激活 MEK1/2信号通路诱发休眠肿瘤细胞恢复增殖[55]。因此,接受紫杉醇类化疗的患者血浆中 IL-6 和 G-CSF 的水平可以作为上述副作用的指征,并且联合使用 IL-6 或 G-CSF的中和抗体或 MEK1/2激酶抑制剂可显著增强化疗疗效。此外,化疗还能通过活化 SP1 上调 SLC6A6来摄取更多牛磺酸以抵抗化疗杀伤,同时以营养剥夺的方式导致 CTL细胞功能失调。因此, SLC6A6可作为预判肿瘤耐药和疾病进展的重要标志物,并且有望成为化疗耐药的干预新靶点[56]。由此可见,尽管放/化疗被认为是一种有效的肿瘤治疗策略,但需要联合其他治疗手段 (如免疫检查点封闭治疗和靶向治疗) 抑制其负反馈通路,以提高临床疗效。
-
除了杀伤癌细胞,放/化疗还能直接靶向调控肿瘤微环境中的免疫细胞。例如,阿霉素或吉西他滨可以直接减少或抑制 MDSCs或Treg等抑制性免疫细胞亚群,而5-氟尿嘧啶、奥沙利铂以及培美曲塞等化疗药物则可直接增强 DC或肿瘤浸润淋巴细胞等抗肿瘤免疫细胞亚群的活化[57-59]。因此,不同的化疗药物对肿瘤微环境有不同的调控方式。此外,即便采用相同类型的治疗,不同剂量和不同给药方式可能会导致截然不同的治疗响应。例如,相比于单次高剂量的策略,低剂量多次放疗的治疗效果更优[60]。机制研究显示,多次低剂量放疗可通过分泌细胞外囊泡来诱导 M1型巨噬细胞,进而触发 T细胞的抗肿瘤效应来促进放疗的疗效[61]。
-
综上所述,放/化疗的疗效不仅在于其对癌细胞的杀灭情况,更取决于肿瘤免疫微环境的功能状态及平衡,这些改变依赖于治疗的剂量、频次以及不同药物的具体作用。
-
2.2 靶向治疗对肿瘤免疫微环境的影响
-
尽管手术、放疗、化疗延长了部分患者的生存期,但也存在较强的副作用,且无法做到精准杀死癌细胞。因此,针对肿瘤特异致癌位点进行治疗的靶向药物治疗应运而生。鉴于生长因子受体对肿瘤生长和血管生成的关键作用,靶向其进行药物治疗是目前的一个重要方向。早期针对该靶点的治疗主张通过清除肿瘤血管来阻断肿瘤的生长和侵袭,但实际的治疗效果并不理想。研究发现,靶向破坏肿瘤组织的血管不仅抑制肿瘤细胞的生长,还影响了免疫细胞的浸润和功能以及药物的递送等[62]。因此,将杂乱无序的肿瘤血管系统正常化才是抑制肿瘤的恶性表型并同时保证正常免疫细胞的功能的更优解[62]。目前,靶向 VEGF/VEGFR 信号通路的重组单克隆抗体和小分子酪氨酸激酶抑制剂是抗血管生成治疗的主流药物[63]。值得注意的是,VEGF 除了对血管生成的直接调控作用外,还具备强大的免疫抑制功能。一方面,VEGF抑制DC分化和成熟,并通过多种机制抑制 CD8+ T 细胞的抗肿瘤活性:通过诱导肿瘤内皮细胞 FasL 的表达促进 CD8+ T 细胞发生凋亡;通过 VEGFR-2 信号传导增强 CD8+ T 细胞免疫抑制检查点分子的表达;通过下调趋化因子 CXCL10、CXCL11 以及黏附分子 ICAM-1、 VCAM-1 的表达抑制 T 细胞的浸润[64]。另一方面, VEGF 还能诱导 Treg 和 MDSCs 等免疫抑制细胞的募集。由此可见,肿瘤组织异常的血管生成本身就代表了对免疫微环境的改造。因此,阻断VEGF通路的抗血管生成药物不仅通过正常化肿瘤血管系统来减少血管渗漏、改善其他抗癌药物的递送,还能减少免疫抑制细胞 (Treg 和 MDSCs),恢复 DC 的正常成熟和功能,进而重塑抗肿瘤的免疫微环境[65]。
-
目前,以 HER2抗体为代表的多种靶向药物已广泛应用于肿瘤治疗,并取得较好的临床疗效。研究表明,针对乳腺癌的曲妥珠单抗不仅可直接靶向 HER2 抑制其下游 MAPK 和 PI3K 信号通路的级联激活,还可在肿瘤微环境中募集免疫细胞激活 ADCC作用[66]。同时,曲妥珠单抗还可以与巨噬细胞上的 Fcγ受体结合,以促进抗体依赖性细胞吞噬作用 (Antibody-Dependent Cellular Cytotoxicity, ADCP),增强其抗肿瘤功效[67]。值得注意的是,除了作用于癌细胞,靶向治疗的药物还可能通过直接或间接的方式影响免疫细胞的功能。众多靶向治疗药物除了对肿瘤细胞上特定靶点的直接作用外,还可引发肿瘤细胞发生其他的表型变化,包括免疫抑制分子的上调/下调、抗原递呈功能的增强、炎症因子的分泌增多以及衰老表型的诱导等[68],这些表型的变化从多个方面间接地对肿瘤微环境中各免疫细胞亚群的状态和功能产生影响,从而对免疫微环境的塑造发挥重要的调控作用。更重要的是,许多靶向治疗药物对免疫细胞本身便具有直接的调控作用。例如,尽管靶向MDM2的药物APG-115可激活癌细胞p53的抑肿瘤功能[69],但其应用同时会削弱CD8+T细胞中的STAT5信号,进而抑制了CTL的抗肿瘤效应[70],这可能正是多款MDM2抑制剂治疗效果均不佳的原因之一。值得注意的是,APG-115同时也会抑制 M2 型巨噬细胞的分化[69]。可见,即便是同一种靶向药物,对肿瘤微环境也有着复杂精细的调控机制。无独有偶,BCL2的靶向药物 ABT-737同样具有增强 MDSCs 凋亡敏感性和促进 Treg 富集的双面作用[71-72]。此外,一些靶向治疗药物在干预肿瘤细胞的同时,还可通过调控免疫抑制细胞或抗肿瘤效应细胞的存活发挥更强的抗肿瘤功能。例如, BCL2的靶向药物Venetoclax在增强肿瘤细胞凋亡的同时反而促进 T 细胞的存活[73],而 AURKA 抑制剂 Alisertib在抑制肿瘤细胞活动的同时可诱导MDSCs 的凋亡[74]。因此,除了对肿瘤细胞的直接作用外,靶向治疗对肿瘤免疫微环境的全局影响也是需要重点考量的因素。
-
2.3 免疫治疗对肿瘤免疫微环境的影响
-
免疫治疗通过靶向机体自身的免疫系统,增强抗肿瘤作用[75]。随着越来越多靶向不同抑制受体 (PD-1、CTLA-4或 LAG-3) 的单克隆抗体进入临床领域,免疫检查点阻断 (Immune Checkpoint Blockade,ICB) 成为了实体恶性肿瘤应用最广泛的免疫治疗方法。尽管 ICB 已被证明在多种肿瘤中均能诱导抗肿瘤免疫反应,但仅有少数患者(<30%) 能响应 ICB 治疗[76],部分患者甚至会出现超进展的情况[77]。因此,了解ICB治疗后微环境中肿瘤免疫网络的改变及相关的负反馈机制至关紧要。
-
ICB被认为主要作用于 T细胞,旨在恢复其抗肿瘤活性和功能[78]。目前的研究已证实,ICB激活的T细胞可通过产生IFN-γ来增强抗肿瘤免疫,进而促进肿瘤的消退。例如,IFN-γ能刺激肿瘤细胞和 APC中MHC分子的表达,增强APC产生IL-12,促进 Th1极化,并通过肿瘤微环境中 Th1型趋化因子的产生促进T细胞和NK细胞的募集[79]。新近研究表明,ICB激活效应 CD8+ T细胞产生的 IFN-γ还可通过下调肿瘤SLC3A2和SLC7A11的表达,使其发生脂质过氧化反应和铁死亡,从而进一步诱发更强的抗肿瘤免疫效应[80]。值得注意的是,IFN-γ可同时诱导免疫炎症和免疫抑制的双重信号。多种介导免疫抑制的调节分子,包括 B7-H1 (PD-L1)、IDO 和精氨酸酶等,均可被 IFN-γ直接诱导表达,并与肿瘤免疫耗竭及ICB治疗耐受正相关[81]。此外,在黑色素瘤模型中IFN-α和IFN-γ介导丝氨酸蛋白酶抑制剂SERPINB9的上调,通过灭活颗粒酶B介导免疫逃逸[82],这代表了另一种IFN-γ负反馈调节的机制。事实上,IFN-γ在ICB治疗中的负反馈作用远不止于此。因此,在ICB治疗增强T细胞效应功能的同时,很可能诱发 IFN-γ介导的内在免疫抑制机制,降低免疫治疗的疗效。
-
免疫治疗旨在增强T细胞抗肿瘤能力,但每种免疫治疗方法都以不同的方式利用抗肿瘤T细胞的特性。例如,近期一项研究评估了头颈癌患者接受免疫联合治疗的早期响应情况,发现抗PD-L1疗法主要引起 CD8+ T 细胞的扩增,而抗 PD-L1 和抗 CTLA-4 的联合疗法则会导致 CD4+ 和 CD8+ T 细胞同时扩增。机制上,抗 CTLA-4而非抗 PD-L1的疗法会触发初始或中央记忆 CD4+ T 细胞从肿瘤引流淋巴结经血液转移到肿瘤,并转变为活化的Th1表型实现对肿瘤细胞的杀伤[83]。由此可见,针对不同靶点的免疫检查点抑制剂会选择性调控不同T细胞亚群的功能,甚至同一免疫检查点抑制剂在不同肿瘤中可能都会对微环境有不同的重塑作用。因此,精细化探究不同的免疫疗法对微环境不同亚群的具体影响有助于设计更精准的个性化治疗方案。
-
除了影响 T细胞介导的细胞免疫,ICB治疗对微环境中其他免疫细胞也有重要的调控作用。肝癌中 ICB激活效应 T细胞产生 IFN-γ通过 ST6Gal-Ⅰ依赖的途径触发由浆细胞分泌的IgG抗体的唾液酸化修饰。唾液酸化修饰的 IgG 抗体作用于 DC-SIGN+ 巨噬细胞,刺激下游Raf-1信号并刺激ATF3表达上调,这一效应进而使 cGAS-STING 通路发生失活,最终消除IFN-Ⅰ介导的抗肿瘤免疫效应[84]。这代表了 ICB治疗触发的基于 IgG抗体的负反馈机制。随着单细胞测序技术的成熟,ICB治疗对肿瘤微环境中各细胞亚群全局性影响得以被揭示。新近一项研究通过对 NSCLC 新辅助免疫治疗前后肿瘤标本的单细胞测序分析,发现除了诱导CTL和NK细胞的增多以及 Treg 的减少外,新辅助免疫治疗还诱导了一群高表达 CD86 的 FCRL4+ FCRL5+ 非经典记忆 B 细胞亚群的增多,这群 B 细胞可以通过 CD86 和 CD40 激活滤泡辅助 T 细胞分泌 IL-21,进而激活 CTL。此外,髓系细胞亚群在新辅助免疫治疗的过程中也发生了显著变化。新辅助免疫治疗后肿瘤微环境内富集了 CD16+ CX3CR1+ 的“巡逻”单核细胞,而一群由 SPP1+ 巨噬细胞诱导产生的高表达 PD-L1 和 IDO1 的 CCL3+ 衰老粒细胞发生了显著的削减[85]。在微卫星不稳定性高的结直肠癌中,研究者通过对肿瘤微环境中 41 种免疫基质细胞亚群进行分析,同样发现新辅助免疫检查点治疗引发了免疫微环境的全局性改变:在达到病理完全缓解的患者的肿瘤微环境中,促炎型 IL-1β+单核细胞和 CCL2+ 成纤维细胞显著减少,而 HLA-DRA+ 内皮细胞、CXCL12+ 成纤维细胞、CD4+ 辅助性 T 细胞和 CD20+ B细胞亚群显著增多,这些增多的亚群通过不同的方式辅助T淋巴细胞趋化和激活,最终促进 CD8+ 效应记忆T细胞的分化,并减少耗竭程度更高的有丝分裂的 CD8+ 组织驻留记忆 T 细胞和 CD4+ 调节性 T细胞的比例[86]。这些发现提示,除了 T细胞的功能和表型重塑,其他免疫细胞的亚群改变对免疫治疗可能同样有非常重要的影响,其中髓系细胞亚群的重塑对治疗疗效影响的重要性日益突显。例如,乳腺癌中免疫治疗引发嗜酸性粒细胞在 CD4+ Th 细胞和 IL-5 和 IL-33 的作用下聚集,最终增强 CTL的活化,提高免疫疗法响应,揭示了嗜酸性粒细胞在ICB响应中的重要作用[87]。此外,近期一项研究揭示了抗TIGIT的检查点抑制剂替瑞利尤单抗 Tiragolumab 通过激活肿瘤微环境里的髓系细胞 (巨噬细胞、单核细胞和树突状细胞) 改变抗肿瘤 CTL 的分化状态 (从耗竭效应样状态到记忆样状态),从而有效提升抗 PD-L1 抗体 Atezolizumab 在肺癌患者中的治疗效果,并且上述效应依赖于 Tiragolumab 的活性 Fc 区域[88]。因此,基于不同个体以及特定的治疗方案制定合适的辅助治疗,才能更好地提高免疫治疗的疗效 (见表1)。体以及特定的治疗方案制定合适的辅助治疗,才能更好地提高免疫治疗的疗效 (见表1)。
-
续表
-
3 继发微环境对肿瘤治疗的影响
-
除了肿瘤治疗本身以外,治疗继发形成的微环境对肿瘤进展和疗效具有更为深远的作用[5,91]。厘清其中具体的调控网络,对开发有效的联合治疗策略和肿瘤治疗新手段尤为重要。
-
3.1 继发微环境自身长效抗肿瘤免疫网络的维持/ 偏移影响治疗疗效
-
尽管治疗本身重塑了即时的免疫微环境,这些免疫微环境会随机体状态和各种正负反馈调节的互作呈现动态变化。抗肿瘤免疫网络的正向加强及维持是长期疗效的关键。研究发现,特定化疗药物,如基于奥沙利铂和青蒿琥酯设计的治疗剂奥沙利铂和青蒿琥酯衍生复合物 (Oxaliplatin and Artesunate Derived Complex,OPA) 等,除通过免疫原性死亡激活巨噬细胞 M1型极化外,还能通过抑制巨噬细胞TREM2表达增强极化效果[89]。这些M1型巨噬细胞随后通过表达 iNOS 促进血管正常化,进而形成强化局部的抗肿瘤免疫网络的正反馈调节[92]。然而,在粒细胞大量浸润的肿瘤中,由血管靶向药物诱发的 M1型巨噬细胞反而通过炎症小体信号促进肿瘤血管生成,促使免疫网络的偏移及肿瘤转移[93]。
-
除了髓系反应外,继发淋系反应对局部微环境的抗肿瘤反应同样重要。新近研究表明,鼻咽癌中,吉西他滨联合顺铂化疗可诱发以 B 细胞为中心的抗肿瘤免疫反应网络。值得注意的是,在该体系中,先天样 B 细胞的产生,而非浆细胞的成熟,才是抗肿瘤效应的关键。这些先天样 B 细胞通过 ICOSL-ICOS 轴进一步扩增效应 Th1 和 Tfh 样细胞,最终增强细胞毒性 T 细胞的效应功能[51]。这些发现与部分原发性肿瘤中由于微环境的异常 (缺乏 NK 细胞),浆细胞分泌的抗体无法有效发挥抗肿瘤 ADCC 作用,反而通过诱导 M2b 型巨噬细胞介导免疫抑制的结果相对应[26]。事实上,在浆细胞大量浸润的肿瘤中,ICB 治疗产生的 IFN-γ 会通过 ST6Gal-Ⅰ依赖的途径触发 IgG 抗体唾液酸化修饰,进而将抗肿瘤体液免疫反应转向抑制巨噬细胞 IFN-Ⅰ反应,抑制治疗疗效[84]。
-
肿瘤治疗除了影响原位免疫微环境外,也能通过继发引起全身或远端器官的微环境改变影响肿瘤进展。放/化疗及靶向治疗也可通过免疫原性细胞死亡影响远端微环境。其机制与原位的类似:放疗诱导肿瘤细胞死亡过程中大量诸如CRT、HMGB1、 ATP等 DAMP的释放,增强 DC的吞噬作用,促进 DC 细胞的成熟和抗原呈递[38]。然而,新近也有研究表明,化疗药紫杉醇能诱导肿瘤细胞释放富含膜联蛋白 A6 (Annexin A6,ANXA6) 的外泌体。携带 ANXA6的外泌体被血液运到肺部后通过促进肺组织表达趋化因子 CCL2 招募 Ly6C+ CCR2+ 炎症型单核巨噬细胞,最终促进乳腺癌转移[90]。因此,对肿瘤治疗与微环境互作网络的研究应综合考虑全身的免疫调控网络。
-
3.2 继发微环境通过改变肿瘤细胞恶性生物学特征影响治疗疗效
-
肿瘤微环境的改变在治疗中的作用,最终需体现在对肿瘤细胞的杀伤及对肿瘤细胞恶性生物学行为的改变上。一般认为,但凡可激活T细胞的治疗方式均可通过 T 细胞来源的 IFN-γ 促进肿瘤细胞 MHC-Ⅰ分子的表达[94],进而降低肿瘤细胞被 T 细胞识别和杀伤的阈值,作为治疗相关免疫杀伤效应的基础模式。然而,当 IFN-γ作用于特定遗传背景的肿瘤细胞时,反而促进肿瘤 FGF2信号传导,导致了 ICB 治疗过程中肿瘤的超进展[95]。机制上, FGF2 信号抑制 PKM2 活性并降低烟酰胺腺嘌呤二核苷酸 (NAD+),导致SIRT1介导的β-catenin去乙酰化降低,并增强β-catenin的乙酰化,从而使肿瘤细胞获得了干性特征。可见,不是微环境单独,而是微环境与肿瘤细胞遗传特性 (癌基因信号、代谢组等) 之间的互作决定其对肿瘤治疗的影响[96]。类似地,当 IFN-γ 作用于高表达 AHR 的肿瘤干细胞时,则通过 IDO-Kyn-AHR-p27 轴介导肿瘤干细胞的休眠[97]。这些休眠的干细胞耐受治疗的打击,并在合适的环境中重新萌发,最终导致肿瘤进展[98]。因此,针对不同遗传背景的肿瘤,应根据肿瘤细胞自身的特性,结合对原发和继发微环境的评估,以采用更为精准的治疗策略。
-
4 总结与展望
-
肿瘤免疫微环境与治疗的相互作用是患者临床疗效的关键,对于个体精准治疗方案的制定和治疗效果的预测具有重要意义。目前,有关免疫微环境在肿瘤发生发展与临床诊疗中的分子机制与功能研究尚处于初级阶段。未来的研究应深入揭示特定肿瘤及治疗场景中免疫微环境与治疗的互作过程及机制。在此基础上,进一步利用人工智能和深度学习技术综合分析这些临床及基础研究的大数据,构建更为全面的免疫微环境与治疗互作图谱,以指导临床治疗决策。随着技术的不断进步和对肿瘤免疫微环境的深入理解,相信将会有更多创新的治疗策略涌现,为患者提供更加有效的个性化治疗方案,最终提高癌症患者的生存率和生活质量。
-
参考文献
-
[1] QUAIL D F,JOYCE J A.Microenvironmental regulation of tumor progression and metastasis[J].Nat Med,2013,19(11):1423-1437.
-
[2] JUNTTILA M R,DE SAUVAGE F J.Influence of tumour micro-environment heterogeneity on therapeutic response [J].Nature,2013,501(7467):346-354.
-
[3] MCMILLIN D W,NEGRI J M,MITSIADES C S.The role of tumour-stromal interactions in modifying drug response:Challenges and opportunities[J].Nat Rev Drug Discov,2013,12(3):217-228.
-
[4] HANAHAN D.Hallmarks of cancer:New dimensions[J].Cancer Discov,2022,12(1):31-46.
-
[5] BINNEWIES M,ROBERTS E W,KERSTEN K,et al.Understanding the tumor immune microenvironment(TIME)for effective therapy[J].Nat Med,2018,24(5):541-550.
-
[6] WALDMAN A D,FRITZ J M,LENARDO M J.A guide to cancer immunotherapy:From T cell basic science to clinical practice[J].Nat Rev Immunol,2020,20(11):651-668.
-
[7] LIAO P,WANG W,WANG W,et al.CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J].Cancer Cell,2022,40(4):365-378.
-
[8] ZHOU Z,HE H,WANG K,et al.Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J].Science,2020,368(6494):eaaz7548.
-
[9] EDWARDS J,WILMOTT J S,MADORE J,et al.CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment[J].Clin Cancer Res,2018,24(13):3036-3045.
-
[10] ZOU W,GREEN D R.Beggars banquet:Metabolism in the tumor immune microenvironment and cancer therapy [J].Cell Metab,2023,35(7):1101-1113.
-
[11] MOROTTI M,GRIMM A J,HOPE H C,et al.PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function[J].Nature,2024,629(8011):426-434.
-
[12] LACHER S B,DÖRR J,DE ALMEIDA G P,et al.PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells[J].Nature,2024,629(8011):417-425.
-
[13] LU C,RONG D,ZHANG B,et al.Current perspectiveson the immunosuppressive tumor microenvironment in hepatocellular carcinoma:Challenges and opportunities[J].Mol Cancer,2019,18(1):130.
-
[14] LI J,WANG W,ZHANG Y,et al.Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy[J].J Clin Invest,2020,130(5):2712-2726.
-
[15] ZHU Y,ZHAO Y,WEN J,et al.Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer [J].Sci Immunol,2023,8(81):eade4656.
-
[16] KUANG D M,PENG C,ZHAO Q,et al.Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells[J].Hepatology,2010,51(1):154-164.
-
[17] KUANG D M,XIAO X,ZHAO Q,et al.B7-H1-expressing antigenpresenting cells mediate polarization of protumorigenic Th22 subsets[J].J Clin Invest,2014,124(10):4657-4667.
-
[18] CHEN M M,XIAO X,LAO X M,et al.Polarization of tissue-resident TFH-like cells in human hepatoma bridges innate monocyte inflammation and M2b macrophage polarization[J].Cancer Discov,2016,6(10):1182-1195.
-
[19] ESCHWEILER S,CLARKE J,RAMÍREZ-SUÁSTEGUI C,et al.Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy[J].Nat Immunol,2021,22(8):1052-1063.
-
[20] FRIDMAN W H,MEYLAN M,PETITPREZ F,et al.B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome[J].Nat Rev Clin Oncol,2022,19(7):441-457.
-
[21] HU C,YOU W,KONG D,et al.Tertiary lymphoid struc‐ture-associated B cells enhance CXCL13+ CD103+ CD8+ tissue-resident memory T-cell response to programmed cell death protein 1 blockade in cancer immunotherapy [J].Gastroenterology,2024,166(6):1069-1084.
-
[22] CABRITA R,LAUSS M,SANNA A,et al.Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J].Nature,2020,577:561-565.
-
[23] HELMINK B A,REDDY S M,GAO J,et al.B cells and tertiary lymphoid structures promote immunotherapy response[J].Nature,2020,577(7791):549-555.
-
[24] XIAO X,LAO X M,CHEN M M,et al.PD-1hi Identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression[J].Cancer Discov,2016,6(5):546-559.
-
[25] WANG Z,LU Z,LIN S,et al.Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion[J].Immunity,2022,55(6):1067-1081.
-
[26] WEI Y,LAO X M,XIAO X,et al.Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice[J].Gastroenterology,2019,156(6):1890-1904.
-
[27] CHEN Z,ZHANG G,REN X,et al.Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer[J].Cancer Res,2023,83(21):3544-3561.
-
[28] GOSWAMI S,ANANDHAN S,RAYCHAUDHURI D,et al.Myeloid cell-targeted therapies for solid tumours[J].Nat Rev Immunol,2023,23(2):106-120.
-
[29] CHEN D P,NING W R,JIANG Z Z,et al.Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma[J].J Hepatol,2019,71(2):333-343.
-
[30] YANG F,AKHTAR M N,ZHANG D,et al.An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma [J].Sci Adv,2024,10(9):eadj4678.
-
[31] WEI Y,ZHAO Q,GAO Z,et al.The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy[J].J Clin Invest,2019,129(8):3347-3360.
-
[32] WANG J C,CHEN D P,LU S X,et al.PIM2 expression induced by proinflammatory macrophages suppresses immunotherapy efficacy in hepatocellular carcinoma[J].Cancer Res,2022,82(18):3307-3320.
-
[33] YU J,GREEN M D,LI S,et al.Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J].Nat Med,2021,27(1):152-164.
-
[34] CHOW A,SCHAD S,GREEN M D,et al.Tim-4+ cavityresident macrophages impair anti-tumor CD8+ T cell immunity[J].Cancer Cell,2021,39(7):973-988.
-
[35] SHAUL M E,FRIDLENDER Z G.Tumour-associated neutrophils in patients with cancer[J].Nat Rev Clin Oncol,2019,16(10):601-620.
-
[36] YANG L Y,LUO Q,LU L,et al.Increased neutrophil extracellular traps promote metastasis potential of hepato‐ cellular carcinoma via provoking tumorous inflammatory response[J].J Hematol Oncol,2020,13(1):3.
-
[37] KIM C G,KIM C,YOON S E,et al.Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma[J].J Hepatol,2021,74(2):350-359.
-
[38] WU Y,MA J,YANG X,et al.Neutrophil profiling illuminates anti-tumor antigen-presenting potency[J].Cell,2024,187(6):1422-1439.
-
[39] HIRSCHHORN D,BUDHU S,KRAEHENBUEHL L,etal.T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants[J].Cell,2023,186(7):1432-1447.e17.
-
[40] PICKUP M W,MOUW J K,WEAVER V M.The extracellular matrix modulates the hallmarks of cancer[J].EMBO Rep,2014,15(12):1243-1253.
-
[41] VALKENBURG K C,DE GROOT A E,PIENTA K J.Targeting the tumour stroma to improve cancer therapy [J].Nat Rev Clin Oncol,2018,15(6):366-381.
-
[42] ROSSI SEBASTIANO M,POZZATO C,SALIAKOURA M,et al.ACSL3-PAI-1 signaling axis mediates tumorstroma cross-talk promoting pancreatic cancer progression [J].Sci Adv,2020,6(44):eabb9200.
-
[43] BUCK M D,SOWELL R T,KAECH S M,et al.Metabolic instruction of immunity[J].Cell,2017,169(4):570-586.
-
[44] ZHANG J J,LI J H,HOU Y Q,et al.Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor[J/OL].Cell,2024,S0092-8674(24)00448-3.[2024-05-13].https://www.sciencedirect.com/science/article/pii/S0092867424004483?via%3Dihub.
-
[45] WANG-GILLAM A,LIM K H,MCWILLIAMS R,et al.Defactinib,pembrolizumab,and gemcitabine in patients with advanced treatment refractory pancreatic cancer:A phase I dose escalation and expansion study[J].Clin Cancer Res,2022,28(24):5254-5262.
-
[46] MARIATHASAN S,TURLEY S J,NICKLES D,et al.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J].Nature,2018,554(7693):544-548.
-
[47] TAURIELLO D V F,SANCHO E,BATLLE E.Overcoming TGFβ-mediated immune evasion in cancer[J].Nat Rev Cancer,2022,22(1):25-44.
-
[48] PINATO D J,MURRAY S M,FORNER A,et al.Transarterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma:implications for immunotherapy[J].J Immunother Cancer,2021,9(9):e003311.
-
[49] MCLAUGHLIN M,PATIN E C,PEDERSEN M,et al.Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J].Nat Rev Cancer,2020,20(4):203-217.
-
[50] DIAMOND J M,VANPOUILLE-BOX C,SPADA S,et al.Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs[J].Cancer Immunol Res,2018,6(8):910-920.
-
[51] LV J,WEI Y,YIN J H,et al.The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment[J].Nat Med,2023,29(6):1424-1436.
-
[52] LU Y,ZHAO Q,LIAO J Y,et al.Complement signals determine opposite effects of B cells in chemotherapyinduced immunity[J].Cell,2020,180(6):1081-1097.
-
[53] OYOSHI H,DU J,SAKAI S A,et al.Comprehensive single-cell analysis demonstrates radiotherapy-induced infiltration of macrophages expressing immunosuppressive genes into tumor in esophageal squamous cell carcinoma[J].Sci Adv,2023,9(50):eadh9069.
-
[54] MONDINI M,LOYHER P L,HAMON P,et al.CCR2-dependent recruitment of tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance [J].Cancer Immunol Res,2019,7(3):376-387.
-
[55] GANESAN R,BHASIN S S,BAKHTIARY M,et al.Taxane chemotherapy induces stromal injury that leads to breast cancer dormancy escape[J].PLoS Biol,2023,21(9):e3002275.
-
[56] CAO T,ZHANG W,WANG Q,et al.Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells[J].Cell,2024,187(9):2288-2304.
-
[57] ALIZADEH D,TRAD M,HANKE N T,et al.Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J].Cancer Res,2014,74(1):104-118.
-
[58] OBRADOVIC A,AGER C,TURUNEN M,et al.Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators[J].Cancer Cell,2023,41(5):933-949.
-
[59] SCHAER D A,GEEGANAGE S,AMALADAS N,et al.The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy[J].Clin Cancer Res,2019,25(23):7175-7188.
-
[60] GUO S,YAO Y,TANG Y,et al.Radiation-induced tumor immune microenvironments and potential targets for combination therapy[J].Signal Transduct Target Ther,2023,8(1):205.
-
[61] STARY V,WOLF B,UNTERLEUTHNER D,et al.Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer[J].J Immunother Cancer,2020,8(2):e000667.
-
[62] CAO Y,LANGER R,FERRARA N.Targeting angiogenesis in oncology,ophthalmology and beyond[J].Nat Rev Drug Discov,2023,22(6):476-495.
-
[63] AUGUSTIN H G,KOH G Y.Antiangiogenesis:Vessel regression,vessel normalization,or both?[J].Cancer Res,2022,82(1):15-17.
-
[64] LIU Z L,CHEN H H,ZHENG L L,et al.Angiogenic signaling pathways and antiangiogenic therapy for cancer[J].Signal Transduct Target Ther,2023,8(1):198.
-
[65] FUKUMURA D,KLOEPPER J,AMOOZGAR Z,et al.Enhancing cancer immunotherapy using antiangiogenics:Opportunities and challenges[J].Nat Rev Clin Oncol,2018,15(5):325-340.
-
[66] COLLINS D M,O'DONOVAN N,MCGOWAN P M,et al.Trastuzumab induces antibody-dependent cell-mediated cytotoxicity in HER-2-non-amplified breast cancer cell lines[J].Ann Oncol,2012,23(7):1788-1795.
-
[67] SWAIN S M,SHASTRY M,HAMILTON E.Targeting HER2-positive breast cancer:Advances and future directions [J].Nat Rev Drug Discov,2023,22(2):101-126.
-
[68] PETRONI G,BUQUÉ A,ZITVOGEL L,et al.Immuno‐ modulation by targeted anticancer agents[J].Cancer Cell,2021,39(3):310-345.
-
[69] FANG D D,TANG Q,KONG Y,et al.MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment[J].J Immunother Cancer,2019,7(1):327.
-
[70] ZHOU J,KRYCZEK I,LI S,et al.The ubiquitin ligase MDM2 sustains STAT5 stability to control T cellmediated antitumor immunity[J].Nat Immunol,2021,22(4):460-470.
-
[71] HU X,BARDHAN K,PASCHALL A V,et al.Deregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer[J].J Biol Chem,2013,288(26):19103-19115.
-
[72] GABRIEL S S,BON N,CHEN J,et al.Distinctive expression of Bcl-2 factors in regulatory T cells determines a pharmacological target to induce immunological tolerance[J].Front Immunol,2016,7:73.
-
[73] KOHLHAPP F J,HARIBHAI D,MATHEW R,et al.Venetoclax increases intratumoral effector T cells and antitumor efficacy in combination with immune checkpoint blockade[J].Cancer Discov,2021,11(1):68-79.
-
[74] YIN T,ZHAO Z B,GUO J,et al.Aurora a inhibition eliminates myeloid cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in breast cancer[J].Cancer Res,2019,79(13):3431-3444.
-
[75] SUN Q,HONG Z,ZHANG C,et al.Immune checkpoint therapy for solid tumours:Clinical dilemmas and future trends[J].Signal Transduct Target Ther,2023,8(1):320.
-
[76] PINTER M,JAIN R K,DUDA D G.The current land‐ scape of immune checkpoint blockade in hepatocellular carcinoma:A review[J].JAMA Oncol,2021,7(1):113-123.
-
[77] CHAMPIAT S,FERRARA R,MASSARD C,et al.Hyperprogressive disease:Recognizing a novel pattern to improve patient management[J].Nat Rev Clin Oncol,2018,15(12):748-762.
-
[78] OLIVEIRA G,WU C J.Dynamics and specificities of T cells in cancer immunotherapy[J].Nat Rev Cancer,2023,23(5):295-316.
-
[79] GOCHER A M,WORKMAN C J,VIGNALI D A A.Interferon-γ:Teammate or opponent in the tumour microenvironment?[J].Nat Rev Immunol,2022,22(3):158-172.
-
[80] WANG W,GREEN M,CHOI J E,et al.CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy [J].Nature,2019,569(7755):270-274.
-
[81] DU W,FRANKEL T L,GREEN M,et al.IFN-γ signal‐ ing integrity in colorectal cancer immunity and immunotherapy[J].Cell Mol Immunol,2022,19(1):23-32.
-
[82] IBÁÑEZ-MOLERO S,VAN VLIET A,POZNIAK J,et al.SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response[J].Oncoimmunology,2022,11(1):2139074.
-
[83] FRANKEN A,BILA M,MECHELS A,et al.CD4+ T cell activation distinguishes response to anti-PD-L1+ antiCTLA4 therapy from anti-PD-L1 monotherapy[J].Immunity,2024,57(3):541-558.
-
[84] WU R Q,LAO X M,CHEN D P,et al.Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma[J].Immunity,2023,56(1):180-192.
-
[85] HU J,ZHANG L,XIA H,et al.Tumor microenvironment remodeling after neoadjuvant immunotherapy in nonsmall cell lung cancer revealed by single-cell RNA sequencing[J].Genome Med,2023,15(1):14.
-
[86] LI J,WU C,HU H,et al.Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer[J].Cancer Cell,2023,41(6):1152-1169.e7.
-
[87] BLOMBERG O S,SPAGNUOLO L,GARNER H,et al.IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer[J].Cancer Cell,2023,41(1):106-123.e10.
-
[88] GUAN X,HU R,CHOI Y,et al.Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells [J].Nature,2024,627(8004):646-655.
-
[89] YANG T,ZHANG S,YUAN H,et al.Platinum-based TREM2 inhibitor suppresses tumors by remodeling the immunosuppressive microenvironment[J].Angew Chem Int Ed Engl,2023,62(2):e202213337.
-
[90] KEKLIKOGLOU I,CIANCIARUSO C,GÜÇ E,et alChemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models[J].Nat Cell Biol,2019,21(2):190-202.
-
[91] MARILYNE L,JOAN S B,GORDON B M,et al.Therapy resistance:Opportunities created by adaptive responses to targeted therapies in cancer[J].Nat Rev Cancer,2022,22(6):323-339.
-
[92] FELIX K,HRIDAYESH P,PETER E H,et al.Low-dose irradiation programs macrophage differentiation to an iNOS ⁺/M1 phenotype that orchestrates effective T cell immunotherapy[J].Cancer Cell,2013,24(5):589-602.
-
[93] MU M,HUANG C X,QU C,et al.Targeting ferroptosiselicited inflammation suppresses hepatocellular carcinoma metastasis and enhances sorafenib efficacy[J].Cancer Res,2024,84(6):841-854.
-
[94] ZHOU L,MUDIANTO T,MA X,et al.Targeting EZH2 enhances antigen presentation,antitumor immunity,and circumvents anti-PD-1 resistance in head and neck cancer [J].Clin Cancer Res,2020,26(1):290-300.
-
[95] LI G,CHOI J E,KRYCZEK I,et al.Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy[J].Cancer Cell,2023,41(2):304-322.
-
[96] CHEN D P,WANG J C,LIU Z Y,et al.miRNome targeting NF-κB signaling orchestrates macrophage-triggered cancer metastasis and recurrence[J].Mol Ther,2024,32(4):1110-1124.
-
[97] LIU Y,LIANG X,YIN X,et al.Blockade of IDOkynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells[J].Nat Commun,2017,8:15207.
-
[98] ADAM-ARTIGUES A,VALENCIA SALAZAR L E,AGUIRRE-GHISO J A.Immune evasion by dormant disseminated cancer cells:A fermi paradox?[J].Cancer Cell,2024,42(1):13-15.
-
摘要
肿瘤免疫微环境在肿瘤的发生和发展过程中扮演着关键角色,并与治疗的长期有效性密切相关。值得注意的是,除了受微环境影响,治疗的同时也会反过来主动塑造微环境的构成。近年来,借助单细胞测序等新兴技术,各种治疗手段与免疫微环境之间的相互作用以及其对治疗效果的影响在多种肿瘤中得到揭示。本文综述了原发性肿瘤免疫微环境对肿瘤疗效的影响,介绍了不同治疗方式对微环境的重塑情况,并探讨了继发性免疫微环境与肿瘤相互作用的复杂调节机制对最终治疗结局的影响。厘清肿瘤免疫微环境与治疗互作的机制对治疗效果的监控和预测,以及更优化治疗方案的制定具有重要意义。
Abstract
The tumor immune microenvironment plays a crucial role in the initiation and progression of tumors, and is closely related to the long-term effectiveness of treatments. Notably, while being influenced by the microenvironment, treatment can also actively reshape the composition of the microenvironment. In recent years, with the help of emerging technologies such as single-cell sequencing, the interactions between various therapeutic approaches and the immune microenvironment, as well as their impact on therapeutic efficacy, have been revealed in various tumors. This review summarizes the impact of primary tumor immune microenvironments on therapeutic efficacy, introduces the remodeling of microenvironment by different therapeutic approaches, and explores the intricate regulatory mechanisms governing secondary immune microenvironments' interactions with tumors and their implications on treatment outcomes. Clarifying the mechanisms of interactions between the tumor immune microenvironment and treatments has profound implications for monitoring and predicting treatment outcomes, as well as for optimizing cancer therapy.