en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王红艳(1975-),女,安徽亳州人,研究员,主要从事免疫细胞介导的炎症相关疾病的研究,E-mail:hongyanwang@sibcb.ac.cn

中图分类号:R392.1

文献标识码:A

文章编号:2096-8965(2024)02-0036-10

DOI:10.12287/j.issn.2096-8965.20240205

参考文献 1
HANUKOGLU I.Steroidogenic enzymes:Structure,function,and role in regulation of steroid hormone biosynthesis[J].J Steroid Biochem Mol Biol,1992,43(8):779-804.
参考文献 2
KULIG W,CWIKLIK L,JURKIEWICZ P,et al.Cholesterol oxidation products and their biological importance[J].Chem Phys Lipids,2016,199:144-160.
参考文献 3
REPA J J,MANGELSDORF D J.The role of orphan nuclear receptors in the regulation of cholesterol homeostasis [J].Annual Review of Cell and Developmental Biology,2000,16(1):459-481.
参考文献 4
ALTMANN S W,DAVIS H R,ZHU L J,et al.NiemannPick C1 Like 1 protein is critical for intestinal cholesterol absorption[J].Science,2004,303(5661):1201-1204.
参考文献 5
HU X,CHEN F,JIA L,et al.A gut-derived hormone regulates cholesterol metabolism[J].Cell,2024,187(7):1685-1700.e18.
参考文献 6
SEKIYA M,OSUGA J,IGARASHI M,et al.The role of neutral cholesterol ester hydrolysis in macrophage foam cells[J].J Atheroscler Thromb,2011,18(5):359-364.
参考文献 7
LUO J,YANG H,SONG B L.Mechanisms and regulation of cholesterol homeostasis[J].Nature Reviews:Molecular Cell Biology,2020,21(4):225-245.
参考文献 8
GUO C,CHI Z,JIANG D,et al.Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J].Immunity,2018,49(5):842-856.e7.
参考文献 9
BROWN M S,RADHAKRISHNAN A,GOLDSTEIN J L.Retrospective on cholesterol homeostasis:The central role of scap[J].Annual Review of Biochemistry,2018,87:783-807.
参考文献 10
ZELCER N,HONG C,BOYADJIAN R,et al.LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J].Science,2009,325(5936):100-104.
参考文献 11
WIDENMAIER S B,SNYDER N A,NGUYEN T B,et al.NRF1 is an ER membrane sensor that is central to cholesterol homeostasis[J].Cell,2017,171(5):1094-1109.
参考文献 12
GILL S,CHOW R,BROWN A J.Sterol regulators of cholesterol homeostasis and beyond:The oxysterol hypothesis revisited and revised[J].Progress in Lipid Research,2008,47(6):391-404.
参考文献 13
JAKOBSSON T,TREUTER E,GUSTAFSSON J A,et al.Liver X receptor biology and pharmacology:New pathways,challenges and opportunities[J].Trends in Pharmacological Sciences,2012,33(7):394-404.
参考文献 14
SIMMONS G E,PRUITT W M,PRUITT K.Diverse roles of SIRT1 in cancer biology and lipid metabolism[J].International Journal of Molecular Sciences,2015,16(1):950-965.
参考文献 15
COPPENS I.Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies[J].Nat Rev Microbiol,2013,11(12):823-835.
参考文献 16
CASTRILLO A,JOSEPH S B,VAIDYA S A,et al.Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism[J].Mol Cell,2003,12(4):805-816.
参考文献 17
BAEK S H,LI A H,SASSETTI C M.Metabolic regulation of mycobacterial growth and antibiotic sensitivity[J].PLoS Biol,2011,9(5):1001065.
参考文献 18
MACKENZIE J M,KHROMYKH A A,PARTON R G.Cholesterol manipulation by West Nile virus perturbs the cellular immune response[J].Cell Host & Microbe,2007,2(4):229-239.
参考文献 19
ROTHWELL C,LEBRETON A,YOUNG NG C,et al.Cholesterol biosynthesis modulation regulates dengue viral replication[J].Virology,2009,389(1-2):8-19.
参考文献 20
PETERSEN J,DRAKE M J,BRUCE E A,et al.The major cellular sterol regulatory pathway is required for Andes virus infection[J].PLoS Pathogens,2014,10(2):e1003911.
参考文献 21
RADHAKRISHNAN A,IKEDA Y,KWON H J,et al.Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:Oxysterols block transport by binding to Insig[J].P Natl Acad Sci USA,2007,104(16):6511-6518.
参考文献 22
YORK A G,WILLIAMS K J,ARGUS J P,et al.Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling[J].Cell,2015,163(7):1716-1729.
参考文献 23
BLANC M,HSIEH W Y,ROBERTSON K A,et al.Host defense against viral infection involves interferon mediated downregulation of sterol biosynthesis[J].PLoS Biology,2011,9(3):e1000598.
参考文献 24
LI C,DENG Y Q,WANG S,et al.25-hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model[J].Immunity,2017,46(3):446-456.
参考文献 25
XIAO J,LI W,ZHENG X,et al.Targeting 7-dehydrocho-lesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection[J].Immunity,2020,52(1):109-122.e6.
参考文献 26
TALL A R,YVAN-CHARVET L.Cholesterol,inflammation and innate immunity[J].Nat Rev Immunol,2015,15(2):104-116.
参考文献 27
BJORKBACKA H,KUNJATHOOR V V,MOORE K J,et al.Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J].Nat Med,2004,10(4):416-421.
参考文献 28
REBOLDI A,DANG E V,MCDONALD J G,et al.Inflammation 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon[J].Science,2014,345(6197):679-684.
参考文献 29
SPANN N J,GARMIRE L X,MCDONALD J G,et al.Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses[J].Cell,2012,151(1):138-52.
参考文献 30
IOANNOU G N.The Role of Cholesterol in the Patho‐ genesis of NASH[J].Trends Endocrinol Metab,2016,27(2):84-95.
参考文献 31
DANG E V,MCDONALD J G,RUSSELL D W,et al.Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation[J].Cell,2017,171(5):1057-1071.e11.
参考文献 32
AKULA M K,SHI M,JIANG Z,et al.Control of the innate immune response by the mevalonate pathway[J].Nature Immunology,2016,17(8):922-999.
参考文献 33
GUO C,XIE S,CHI Z,et al.Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J].Immunity,2016,45(4):802-816.
参考文献 34
SONG X,SUN X,OH S F,et al.Microbial bile acid metabolites modulate gut RORgamma(+)regulatory T cell homeostasis[J].Nature,2020,577(7790):410-415.
参考文献 35
BEKKERING S,ARTS R J W,NOVAKOVIC B,et al.Metabolic induction of trained immunity through the mevalonate pathway[J].Cell,2018,172(1-2):135-146.e9.
参考文献 36
WESTERTERP M,GAUTIER E L,GANDA A,et al.Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity[J].Cell Metabolism,2017,25(6):1294-1304.e6.
参考文献 37
KOVAROVA M,WASSIF C A,ODOM S,et al.Cholesterol deficiency in a mouse model of Smith-LemliOpitz syndrome reveals increased mast cell responsiveness [J].J Exp Med,2006,203(5):1161-1171.
参考文献 38
ACHOUR A,LANDUREAU J C,SALERNO-GON‐ CALVES R,et al.Restoration of immune response by a cationic amphiphilic drug(AY 9944)in vitro:A new approach To chemotherapy against human immunodeficiency virus type 1[J].Antimicrobial Agents and Chemotherapy,1998,42(10):2482-2491.
参考文献 39
ARALDI E,FERNANDEZ-FUERTES M,CANFRANDUQUE A,et al.Lanosterol modulates TLR4-mediated innate immune responses in macrophages[J].Cell Reports,2017,19(13):2743-2755.
参考文献 40
HUANG B,SONG B L,XU C.Cholesterol metabolism in cancer:Mechanisms and therapeutic opportunities[J].Nature Metabolism,2020,2(2):132-141.
参考文献 41
MA X,BI E,HUANG C,et al.Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity[J].The Journal of Experimental Medicine,2018,215(6):1555-1569.
参考文献 42
LEWIS C A,BRAULT C,PECK B,et al.SREBP maintains lipid biosynthesis and viability of cancer cells under lipid-and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J].Oncogene,2015,34(40):5128-5140.
参考文献 43
GARCIA-BERMUDEZ J,BAUDRIER L,BAYRAKTAR E C,et al.Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death[J].Nature,2019,567(7746):118-122.
参考文献 44
KONSTANTINOPOULOS P A,KARAMOUZIS M V,PAPAVASSILIOU A G.Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets[J].Nature Reviews Drug Discovery,2007,6(7):541-555.
参考文献 45
KAYMAK I,MAIER C R,SCHMITZ W,et al.Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to metabolic stress[J].Cancer Research,2020,80(2):189-203.
参考文献 46
GUO C,WAN R,HE Y,et al.Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer[J].Nat Cancer,2022,3(5):614-628.
参考文献 47
NELSON E R,CHANG C Y,MCDONNELL D P.Cholesterol and breast cancer pathophysiology[J].Trends in Endocrinology and Metabolism,2014,25(12):649-655.
参考文献 48
CYSTER J G,DANG E V,REBOLDI A,et al.25-Hydroxycholesterols in innate and adaptive immunity[J].Nature Reviews Immunology,2014,14(11):731-743.
参考文献 49
YAMANAKA K,SAITO Y,YAMAMORI T,et al.24(S)-hydroxycholesterol induces neuronal cell death through necroptosis,a form of programmed necrosis[J].The Journal of Biological Chemistry,2011,286(28):24666-24673.
参考文献 50
DAMBAL S,ALFAQIH M,SANDERS S,et al.27-hydroxycholesterol impairs plasma membrane lipid raft signaling as evidenced by inhibition of IL6-JAK-STAT3 signaling in prostate cancer cells[J].Molecular Cancer Research,2020,18(5):671-684.
参考文献 51
NELSON E R,WARDELL S E,JASPER J S,et al.27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology[J].Science,2013,342(6162):1094-1098.
参考文献 52
GIBSON D A,COLLINS F,COUSINS F L,et al.The impact of 27-hydroxycholesterol on endometrial cancer proliferation[J].Endocrine-Related Cancer,2018,25(4):381-391.
参考文献 53
WANG S,YAO Y,RAO C,et al.25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-kappaB signaling pathway[J].Int J Oncol,2019,54(3):966-980.
参考文献 54
CHEN L,ZHANG L,XIAN G,et al.25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells[J].Biochemical and Biophysical Research Communications,2017,484(4):857-863.
参考文献 55
DEVALARAJA S,TO T K J,FOLKERT I W,et al.Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression[J].Cell,2020,180(6):1098-1114.e16.
参考文献 56
EIBINGER G,FAULER G,BERNHART E,et al.On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines.Implications for chemotactic monocyte recruitment[J].Experimental Cell Research,2013,319(12):1828-1838.
参考文献 57
XIAO J,WANG S,CHEN L L,et al.25-hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages [J].Immunity,2024,57(5):1087-1104.e7.
参考文献 58
ORTIZ A,GUI J,ZAHEDI F,et al.An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles[J].Cancer Cell,2019,35(1):33-45.e6.
参考文献 59
VILLABLANCA E J,RACCOSTA L,ZHOU D,et al.Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses[J].Nature Medicine,2010,16(1):98-105.
参考文献 60
PLEBANEK M P,XUE Y,NGUYEN Y V,et al.A lactateSREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression[J].Sci Immunol,2024,9(95):eadi4191.
参考文献 61
QIN W H,YANG Z S,LI M,et al.High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice[J].Gastroenterology,2020,158(6):1713-1727.
参考文献 62
BAUMAN D R,BITMANSOUR A D,MCDONALD J G,et al.25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(39):16764-16769.
参考文献 63
SUN S,LIU C.7alpha,25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases[J].Frontiers in Pharmacology,2015,6:60.
参考文献 64
KIDANI Y,ELSAESSER H,HOCK M B,et al.Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J].Nature Immunology,2013,14(5):489-499.
参考文献 65
YANG W,BAI Y,XIONG Y,et al.Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J].Nature,2016,531(7596):651-655.
参考文献 66
YUAN J,CAI T,ZHENG X,et al.Potentiating CD8(+)T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling[J].Protein & Cell,2021,12(4):240-260.
参考文献 67
LIU X,BAO X,HU M,et al.Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer[J].Nature,2020,588(7839):693-698.
参考文献 68
MA X,BI E,LU Y,et al.Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J].Cell Metabolism,2019,30(1):143-156.e5.
参考文献 69
BAZIOTI V,LA ROSE A M,MAASSEN S,et al.T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice[J].Nature Communications,2022,13(1):3799.
参考文献 70
YAN C,ZHENG L,JIANG S,et al.Exhaustionassociated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity[J].Cancer Cell,2023,41(7):1276-1293.e11.
参考文献 71
HU C,QIAO W,LI X,et al.Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+ T cells[J].Cell Metabolism,2024,36(3):630-647.e8.
参考文献 72
ZHANG Y,VU T,PALMER D C,et al.A T cell resilience model associated with response to immunotherapy in multiple tumor types[J].Nature Medicine,2022,28(7):1421-1431.
参考文献 73
LU Z,MCBREARTY N,CHEN J Y,et al.ATF3 and CH25H regulate effector trogocytosis and anti-tumor activities of endogenous and immunotherapeutic cytotoxic T lymphocytes[J].Cell Metabolism,2022,34(9):1342-1358.e7.
参考文献 74
BENSINGER S J,BRADLEY M N,JOSEPH S B,et al.LXR signaling couples sterol metabolism to proliferation in the acquired immune response[J].Cell,2008,134(1):97-111.
参考文献 75
XU J,WAGONER G,DOUGLAS J C,et al.Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity[J].Journal of Leukocyte Biology,2009,86(2):401-409.
参考文献 76
TAKAHASHI H,NOMURA H,IRIKI H,et al.Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell-mediated inflammation in the skin[J].Sci Immunol,2021,6(64):eabb6444.
参考文献 77
ALROSAN A Z,HEILAT G B,AL SUBEH Z Y,et al.The effects of statin therapy on brain tumors,particularly glioma:A review[J].Anticancer Drugs,2023,34(9):985-994.
参考文献 78
CAO D,LIU H.Dysregulated cholesterol regulatory genes in hepatocellular carcinoma[J].Eur J Med Res,2023,28(1):580.
参考文献 79
CORADINI D.Impact of De Novo cholesterol biosynthesis on the initiation and progression of breast cancer[J].Biomolecules,2024,14(1).
参考文献 80
HE X,LAN H,JIN K,et al.Cholesterol in colorectal cancer:An essential but tumorigenic precursor?[J].Front Oncol,2023,13:1276654.
参考文献 81
KUZU O F,NOORY M A,ROBERTSON G P.The role of cholesterol in cancer[J].Cancer Res,2016,76(8):2063-2070.
参考文献 82
REBELO A,KLEEFF J,SUNAMI Y.Cholesterol metabolism in pancreatic cancer[J].Cancers(Basel),2023,15(21):5177.
参考文献 83
BAEK A E,NELSON E R.The contribution of cholesterol and its metabolites to the pathophysiology of breast cancer [J].Horm Cancer,2016,7(4):219-228.
参考文献 84
SNAEBJORNSSON M T,JANAKI-RAMAN S,SCHULZE A.Greasing the wheels of the cancer machine:The role of lipid metabolism in cancer[J].Cell Metabolism,2020,31(1):62-76.
目录contents

    摘要

    胆固醇及多种胆固醇代谢物是细胞膜和细胞器膜的最重要的组成成分,在调控细胞膜的流动性和通透性、脂筏的形成、信号传导等方面发挥着重要作用。最近的研究表明,胆固醇中间代谢产物及其衍生物参与调控免疫细胞的增殖、分化、迁移、效应功能或者耗竭功能、免疫监视或者免疫逃逸等多种功能,靶向胆固醇代谢能够干预感染、炎症和肿瘤等多种疾病进程。本文主要介绍感染、肿瘤或炎症反应过程中,胆固醇代谢酶和代谢物参与调节免疫细胞生理或病理功能的研究进展。

    Abstract

    Cholesterol and its various metabolites are essential components of cell and organelle membranes, playing crucial roles in regulating membrane mobility, permeability, lipid raft formation, and signal transduction. Recent studies have demonstrated that cholesterol intermediates and their derivatives are involved in a variety of biological functions in immune cells, including proliferation, differentiation, migration, effector activity, exhaustion, immune surveillance, and immune evasion. Targeting cholesterol metabolism can influence the progression of various diseases, such as infections, inflammation, and tumors. This article reviews recent advances in understanding how cholesterol metabolic enzymes and metabolites regulate the physiological and pathological functions of immune cells during infections, tumors, and inflammatory responses.

  • 胆固醇又称胆甾醇,是含有环戊烷多氢菲骨架的一种脂质分子,在体内发挥着重要的生理作用。胆固醇广泛存在于动物体内,尤其以脑及神经组织中最为丰富,在肾、脾、皮肤、肝和胆汁中也有较高含量。胆固醇是动物细胞的重要组成物质,它不仅参与细胞膜的形成,调节细胞膜的流动性和渗透性,还能转化为胆汁酸、类固醇激素以及维生素-D3等具有生理调节功能的物质[1]。在生理条件下,胆固醇通常以同载脂蛋白结合的形式存在,按载脂蛋白的种类及脂质比例不同,胆固醇可分为乳糜微粒、极低密度脂蛋白胆固醇、低密度脂蛋白胆固醇 (Low Density Lipoprotein,LDL-C) 和高密度脂蛋白胆固醇 (High Density Lipoprotein, HDL-C),其中LDL-C水平与冠心病、中风的发病风险呈正相关关系,通常称之为“坏胆固醇”, HDL-C对心血管有保护作用,称之为“好胆固醇”。

  • 近年来,胆固醇代谢在免疫中的调控作用受到越来越多的关注。一方面,免疫细胞的增殖、分化以及效应功能的执行过程中会发生胆固醇代谢重编程现象;另一方面,组织微环境中的胆固醇及其代谢产物参与调控免疫细胞的增殖、分化以及效应功能等过程。此外,通过靶向免疫细胞胆固醇代谢通路中的关键代谢酶也能起到免疫调节的作用,包括增强抗病毒免疫反应、抗肿瘤免疫反应、抑制过度的炎症反应等。免疫细胞中胆固醇代谢异常也能够引起包括动脉粥样硬化、自身免疫性疾病等在内的许多重大疾病[2]。免疫细胞中胆固醇及其代谢产物含量过高或过低都会影响细胞的正常生理功能,胆固醇代谢必须处于严密而精准的调控之中,研究胆固醇代谢在免疫细胞中的调控机制有重要的理论意义。

  • 1 胆固醇稳态的维持与调节

  • 胆固醇具有重要的生物学功能,过多的胆固醇会对细胞产生毒性,所以维持细胞内胆固醇的稳态具有重要意义。细胞内胆固醇稳态由4条途径维持:胆固醇的生物合成、胆固醇的摄取、胆固醇的酯化以及向细胞外转运多余胆固醇。胆固醇的生物合成是涉及20多个酶类次序催化起始底物乙酰辅酶A到形成最终产物胆固醇的过程 (见图1),这一合成途径存在于所有的细胞中,但肝是生物体内合成胆固醇的主要器官[3]。细胞也能通过膜上转运蛋白从胞外运进胆固醇。具体过程为小肠上皮细胞通过受体 NPC1L1吸收饮食消化后的胆固醇,转运到肝,肝利用载脂蛋白将吸收的胆固醇与自身合成的胆固醇通过血液循环运往各处组织[4]。其余细胞利用低密度脂蛋白受体 (Low-Density Lipoprotein Receptor, LDLR) 将LDL-C运进细胞。肝肠轴对于体内胆固醇稳态维持极为重要,最新研究发现,肠道吸收胆固醇时会分泌一种全新的蛋白Cholesin,Cholesin通过结合G蛋白偶联受体146 (G Protein-Coupled Receptor 146,GPCR146) 从而抑制 PKA-ERK1 / 2-SREBP2信号通路进而抑制肝组织的胆固醇合成[5]。对于细胞内多余的胆固醇,细胞利用酰基辅酶A-胆固醇酰基转移酶 (Acyl Coenzyme A-Cholesterol Acyltransferase,ACAT) 酯化多余的胆固醇并以脂滴形式储存起来,另一方面,中性胆固醇酯水解酶将胆固醇酯催化分解生成自由胆固醇[6],自由胆固醇通过ABC家族蛋白运出细胞并以高密度脂蛋白形式运到肝进行分解代谢[7]

  • 图1 胆固醇代谢通路

  • Figure1 Cholesterol metabolism pathway

  • 细胞内胆固醇的稳态主要受转录因子甾醇调控元件结合蛋白 (Sterol Regulatory Element Binding Proteins,SREBPs) 与转录因子肝 X受体 (Liver X Receptors,LXRs) 的共同调控。转录因子包含 3 个成员:SREBP1a、SREBP1c 和 SREBP2,其中 SREBP2 在胆固醇的稳态调控中发挥主要作用[8]。 SREBP2的靶基因主要包括胆固醇生物合成途径中的限速酶 3-羟基-3-甲基戊二酰辅酶 A 还原酶 (HMGCR) 与负责从胞外运进胆固醇的膜蛋白 LDLR。翻译后的蛋白 SREBP2 没有转录活性, SREBP2 的活性受内质网上胆固醇含量的调控。当内质网上胆固醇含量降低时,SREBPs切割激活蛋白 (SREBP Cleavage-Activating Protein,SCAP) 运送 SREBP2 从内质网向高尔基体转运,SREBP2 在高尔基体被酶切,形成具有转录活性的 N 段,进入细胞核起始相应基因的转录;当细胞内胆固醇含量充足时,胆固醇改变SCAP构象,使SCAPSREBP2复合体与定位于内质网膜上的胰岛素诱导基因蛋白结合,阻断SREBP2从内质网向高尔基体的转运,从而抑制其转录活性[9]。LXRs转录的主要靶基因包括将细胞内多余胆固醇运出细胞的ABC家族蛋白,如 ABCA1、ABCG1、ABCG5、ABCG8 以及负责降解 LDLR 的肌球蛋白调控轻链反应蛋白[10]。最近研究发现,胆固醇能够通过抑制核呼吸因子 1 (Nuclear Respiratory Factor 1,NRF1) 从内质网膜定位到细胞核,进而对 LXRs转录活性去抑制化从而起始LXRs下游基因的转录[11]

  • 胆固醇通过氧化反应生成羟固醇,羟固醇也参与到细胞内胆固醇的稳态调控。细胞内胆固醇的氧化通过是否涉及酶类催化分为两种:发生在环上的氧化由细胞内 ROS 自然氧化,如 7-酮基胆固醇; 涉及酶类参与的氧化反应一般发生在侧链,如:24 羟基-胆固醇 (24-Hydroxycholesterol, 24-HC)、 25-HC、27-HC 分别由相应酶类催化生成[12]。研究发现,许多羟固醇作为 LXRs的天然配体能够直接结合LXRs进而调控细胞内胆固醇的稳态[13]。此外,胆固醇稳态的调控还与细胞内能量水平密切相关,细胞在ATP不足或机体在禁食时能分别通过磷酸腺苷蛋白激酶 (Adenosine Monophosphate-Activated Protein Kinase,AMPK) 与去乙酰化酶抑制核内SREBP2的转录功能,以便细胞在能量不足时停止合成胆固醇[14]

  • 2 胆固醇代谢与病毒感染

  • 在病毒或细菌感染下,宿主细胞能通过多种有效途径参与抗病毒反应。有文献表明,宿主胆固醇代谢与病原菌感染所诱导的天然免疫之间有着紧密的联系和相互调控作用[15-17]。在病毒感染的过程中,病毒经常会通过改变宿主的脂代谢来支持病毒的复制。抑制胆固醇的生物合成或者减少细胞内的胆固醇水平,也能够减少病毒的入侵[18-20]

  • 进一步的研究揭示,巨噬细胞响应外来病毒入侵时,参与调控胆固醇从头合成的一系列关键酶表达水平都是下调的,导致胆固醇从头合成下调;相反,与胆固醇运输和分解代谢相关酶却是升高的,导致胆固醇被代谢为其他的产物,降低细胞内的胆固醇水平,这种胆固醇重编程过程有利于活化 STING-TBK1-IRF3等信号通路,诱导 IFN-β产生,增强巨噬细胞抵抗病原体的能力[21-22]。IFN-Ⅰ通过自分泌和旁分泌的方式,能抑制胆固醇的从头合成,进一步降低细胞内的胆固醇水平[23]。在这个方向上,目前研究最多的是胆固醇 25 羟化酶 (Cholesterol25-Hydroxylase,CH25H) 和其产物25-HC。例如, IFNs 诱导基因包括升高表达的 CH25H,CH25H 能够将胆固醇氧化成 25-HC,25-HC 通过转移到膜上,进而阻断寨卡病毒等的入侵或复制[24]。因此,胆固醇代谢和IFN-Ⅰ形成相互作用的反馈环路,共同发挥抗病毒功能。

  • 本团队前期的工作发现,无论应对 DNA 病毒还是 RNA 病毒的感染,7-脱氢胆固醇还原酶 (7-Dehydrocholesterol Reductase,DHCR7) 的表达量均显著降低[25]。DHCR7 是将 7-脱氢胆固醇 (7-Dehydrocholesterol,7-DHC) 转化成胆固醇的关键酶,DHCR7 突变的患者表现出智力发育障碍,但是并不清楚 DHCR7 如何调控先天免疫抗病毒感染的功能。通过构建条件性敲除 DHCR7 的小鼠、敲减或敲除 DHCR7 的巨噬细胞、利用小分子抑制剂阻断 DHCR7 的酶活等策略,都能显著增强病毒感染介导的 IFN-β 产生。并且,病毒感染的肝组织、 DHCR7 缺失或其抑制子处理的巨噬细胞升高 7-DHC 的含量,外加天然产物 7-DHC 也能促进巨噬细胞抗感染的功能。有意思的是,用于治疗乳腺癌的化疗药物他莫昔芬曾被美国食品药品监督管理局批准能抑制 DHCR7 酶活,发现他莫昔芬具有抑制水疱性口炎病毒 (Vesicular Stomatitis Virus,VSV) 和寨卡病毒感染的新功能。利用 DHCR7 抑制剂AY9944处理小鼠,可观察到小鼠血清中 7-DHC含量显著升高,从而保护其抵抗致死剂量 VSV 和流感病毒的感染。进一步的机制探索发现,静息期的巨噬细胞表达很低水平的 AKT3,病毒感染促进 AKT3 的表达,而代谢产物 7-DHC 能促进 PI3K-AKT3的活化。AKT3直接结合IRF3并促进IRF3第 385位丝氨酸的磷酸化,增强了IRF3二聚体形成和向细胞核内转移,最终增强了IFN-β产生[25]

  • 3 胆固醇代谢与炎症反应

  • 宿主细胞响应细菌或病毒的感染,通过各种模式识别受体识别病原微生物并诱导炎症因子产生。炎症因子一方面可以激活并调动适应性免疫对病原微生物进一步清除;另一方面,过度的炎症因子也即炎症因子风暴,会导致机体多种器官衰竭甚至死亡。近期大量的工作指出,宿主细胞胆固醇代谢参与了炎症因子的产生过程[26-30]

  • 在细菌脂多糖 (Lipopolysaccharides,LPS) 诱导的内毒素休克模型中,LPS诱导Ch25h基因的表达,促进 25-HC 产生,25-HC 通过抑制 SREBP2 的活性,阻止了胆固醇的合成从而抑制了炎症;相反,Ch25h基因敲除的小鼠中,由于胆固醇的大量累积,减弱了线粒体的呼吸功能,导致 mtDNA 的释放,促进黑色素瘤缺乏因子 2 (Absent In Mel‐anoma2,AIM2) 炎症小体的活化,导致了 IL-1β 炎症因子的产生[31]。此外,25-HC 也能通过抑制 SREBP1 的活性进而抑制炎症小体 NOD 样受体热蛋白结构域蛋白 3 (NOD-Like Receptor Thermal Protein Domain Associated Protein 3,NLRP3) 的活性,最终阻断了 IL-1β 所介导的炎症反应[28]。阻断胆固醇代谢通路中的甲羟戊酸途径,会降低中间代谢产物香叶基香叶基焦磷酸 (Geranylgeranyl Pyrophosphate,GGPP) 的含量,进而抑制 PI3K 的活化,增强炎症因子 IL-1β 的产生[32]。胆汁酸盐作为胆固醇的一类衍生物,在巨噬细胞中通过 TGR5-cAMP-PKA 信号轴促进 NLRP3 第 291 位的丝氨酸磷酸化而促进 NLRP3 的泛素化降解,从而抑制炎症因子 IL-1β 产生[33]。最近的研究还发现,胆汁酸盐能够调控肠道特异 Treg 细胞的发育,抑制肠道炎症的发生并维持肠道稳态[34]

  • 胆固醇代谢中间代谢产物甲羟戊酸通过表观调控单核/巨噬细胞的炎症信号通路进而促进其记忆性固有免疫应答,导致高IgD综合征患者易发无菌性炎症[35]Ldlr基因敲除的小鼠通过高脂喂食诱导的动脉粥样硬化模型中,巨噬细胞通过摄取大量的胆固醇,从而抑制了 24-脱氢胆固醇还原酶 (24-Dehydrocholesterol Reductase,DHCR24) 的活性, DHCR24能够将链甾醇转变为胆固醇。大量累积的链甾醇通过其受体 LXR 抑制过度的炎症反应[29]。最近报道发现,Abca1/Abcg1 基因敲除的小鼠对于高脂喂食更容易形成肾炎等自身免疫性疾病,机制研究发现,在树突状细胞中胆固醇的累积激活了 NLRP3炎症小体所介导的炎症因子产生[36]

  • Dhcr7突变的肥大细胞中,7-DHC在细胞中的大量累积,通过上膜造成了脂筏的不稳定,增强了Fyn蛋白激酶的活性和PI3K-AKT的磷酸化水平,从而导致肥大细胞过度活化而脱颗粒,引起过度的炎症以及过敏反应[37]。来源于获得性免疫缺陷综合征 (Acquired Immune Deficiency Syndrome,AIDS) 患者的外周血单核细胞 (Peripheral Blood Mononuclear Cells,PBMCs),在经过 DHCR7 的特异性抑制剂 AY9944 处理后,能够在一定程度上恢复 PBMCs 细胞因子的表达水平,也能恢复 IL-2 受体的表达。此外,AY9944 还能够抑制人类免疫缺陷病毒 1 型 (Human Immunodeficiency Virus type1, HIV1) 对于 CD4+ T 细胞的感染能力[38]。细胞感染通过下调甾醇14α-去甲基化酶 (Sterol14α-Demethylase,CYP51) 的表达,导致上游羊毛固醇 (La‐ nosterol) 的累积,而 Lanosterol 可以抑制 Toll 样受体 4 (Toll-Like Receptor,TLR) 介导的炎症因子产生。临床上用于治疗皮肤真菌感染的药物酮康唑,可以有效抑制Cyp51a1的活性,从而减轻内毒素休克的发生[39]

  • 4 胆固醇代谢与肿瘤免疫

  • 近几十年研究发现,胆固醇、胆固醇生物合成通路的中间产物、胆固醇衍生物如甲羟戊酸 (Mevalonic Acid,MVA)、法尼基焦磷酸 (Farnesyl Pyrophosphate,FPP)、泛醌 (辅酶Q) 等、胆固醇代谢产物 (如羟固醇、甾醇类激素等) 与肿瘤的形成、发展密切相关[40]。肿瘤组织中浸润除肿瘤细胞外大量的免疫细胞,如肿瘤相关巨噬细胞 (TumorAssociated Macrophage,TAM)、髓系来源的抑制性细胞 (Myeloid-Derived Suppressor Cell,MDSC)、树突状细胞 (Dendritic Cell,DC)、T 淋巴细胞等[41]。除了直接作用于肿瘤细胞,胆固醇及其上下游代谢产物能通过调节这些免疫细胞的功能进而影响肿瘤的发展进程。

  • 不受调控的剧烈增殖是肿瘤细胞的标识之一。研究发现,为满足剧烈增殖的肿瘤细胞对胆固醇的需求,SREBP2 及其靶基因 HMGCR 在肿瘤细胞中上调表达,促进胆固醇生物合成[42];除了增加自身合成胆固醇的能力,肿瘤细胞也能上调细胞膜上相应胆固醇转运蛋白 LDLR,从而增强其从细胞外摄取胆固醇的能力[43]。除了胆固醇,胆固醇的前体及胆固醇衍生物也能影响肿瘤的发展进程。FPP作为胆固醇生物合成的中间代谢产物,被报道能够对小 G 蛋白 Ras 进行异戊烯化修饰从而促进肿瘤的转移[44]。泛醌作为FPP的衍生物,除了参与清除肿瘤细胞ROS,也通过维持线粒体功能满足肿瘤细胞的能量需求[45]。具有化疗耐药性的小细胞肺癌 (Small Cell Lung Cancer,SCLC) 细胞更依赖 MVA-GGPP 代谢通路,他汀类药物能够增加SCLC细胞氧化压力与细胞凋亡进而增强他汀类药物与化疗药物的联合治疗效果[46]。作为胆固醇的衍生产物,雌二醇与二氢睾酮被认为分别促进了乳腺癌与前列腺癌的发生发展[47]

  • 羟固醇作为胆固醇下游代谢产物,能通过抑制 SREBP活性以及激活LXR信号通路从而调控细胞中胆固醇稳态[48]。羟固醇被发现可抑制包括恶性胶质瘤、乳腺癌、前列腺癌、肺癌、结肠癌细胞在内的许多种肿瘤细胞的生长。例如,主要存在于脑中的 24-HC 被认为对神经母细胞瘤细胞具有毒性[49]。 27-HC通过抑制STAT3磷酸化、二聚体形成及入核抑制前列腺肿瘤细胞的生长[50]。然而,27-HC近来被报道可以通过作为雌激素受体 (Estrogen Receptor, ER) 的配体促进ER+ 的乳腺癌肿瘤细胞生长,以及通过作用于LXR促进肿瘤细胞的转移。研究发现,敲除细胞色素 P450家族 27A1 (CYP27A1,催化生成27-HC) 能延长荷瘤小鼠的生存曲线,敲除羟固醇 7α 羟化酶 (CYP7B1,催化 27HC 代谢) 会促进小鼠肿瘤的生长[51]。在子宫内膜癌上,27-HC 被认为通过ER促进肿瘤细胞的增殖,且不依赖LXR信号通路[52]。另一些研究发现,25-HC基本不影响肿瘤细胞的增殖与凋亡,但能通过 LXR 信号通路促进包括肺癌、胃癌、乳腺癌在内的多种肿瘤细胞的迁移[53-54]

  • TAM 是一群被认为促进肿瘤发生发展的免疫细胞,肿瘤细胞通过改变肿瘤组织中浸润的巨噬细胞的胆固醇代谢通路进而促进TAM的形成。例如,肿瘤细胞能够通过分泌透明质酸到肿瘤微环境中,进而置换TAM细胞膜上的胆固醇,胆固醇的缺失增强巨噬细胞中IL-4信号通路进而促进TAM分泌精氨酸酶1(Arginase-1,ARG1),从而促进肿瘤的发生发展[55]。胆固醇代谢产物羟固醇被认为能够参与招募免疫抑制细胞到肿瘤组织这一过程中,研究发现,胶质母细胞瘤能通过分泌25-HC招募外周单核细胞的迁移[56]。本团队近期研究发现,肿瘤微环境中细胞因子 IL-4/IL-13 通过信号转导及转录激活蛋白 6 (Signal Transducer and Activator of Transcription 6, STAT6) 诱导巨噬细胞中 Ch25h的表达,而在其溶酶体积累氧化甾醇 25-HC;溶酶体上的 25-HC 通过激活 AMPK 导致巨噬细胞代谢重编程,同时, 25-HC通过AMPK-STAT6轴促进巨噬细胞中Arg1的分泌进而促进肿瘤的免疫逃逸;通过敲除Ch25h能降低TAM对T细胞的免疫抑制功能,联合anti-PD-1 治疗取得更好的肿瘤清除效果[57]。然而,关于 Ch25h(25-HC)在肿瘤免疫中的功能也有不同观点认为,肿瘤细胞分泌的胞外囊泡通过抑制正常细胞中Ⅰ型干扰素受体1 (IFNAR1) 及降低下游25-HC 的水平进而促进黑色素瘤向肺部转移[58]

  • DC细胞作为一种重要的免疫细胞,通过向T淋巴细胞递呈抗原而在肿瘤的免疫监视中发挥重要作用。肿瘤细胞分泌的羟固醇能通过作用于 DC细胞上的 LXR 信号通路进而抑制 DC 细胞上 CC 基序趋化因子受体 7 (C-C Chemokine Receptor 7,CCR7) 的表达,从而抑制 DC细胞向淋巴器官的迁移以及对 T淋巴细胞、B淋巴细胞的抗原递呈作用,在肿瘤细胞中过表达羟固醇代谢酶细胞溶质磺基转移酶 2B1b (Sulfotransferase2B1b,SULT2B1b) 或敲低 DC 细胞中的 LXR-α 均能有效抑制肿瘤的生长[59]。成熟的调节性 DC 细胞依赖 SREBP2 介导的胆固醇代谢,肿瘤分泌的乳酸通过激活肿瘤浸润的 DC 细胞中 SREBP2 信号通路从而促进免疫耐受型 DC 细胞的分化成熟进而促进肿瘤的发展进程[60]。自然杀伤 (Natural Killer,NK) 细胞在肿瘤免疫监督中发挥着重要功能,研究发现,在利用WT(野生型) 小鼠或载脂蛋白 E (Apolipoprotein E,ApoE) 基因缺失小鼠诱导高胆固醇血症疾病模型的构建过程中,胆固醇能够通过增强 NK细胞的效应功能进而抑制肝癌的发生发展[61]。25-HC在 B细胞的抗体类别转换中也发挥着重要作用,Ch25h敲除的小鼠外周血中检测到免疫球蛋白A (Immunoglobulin A, IgA) 的上调表达,而且 25-HC 对 IgA 的抗体抑制作用不依赖于下游的 7α,25-二羟基胆固醇 (7α,25-Dihydroxycholesterol,7α,25-OHC) 及相应受体 EBI2 的信号通路[62]。7α,25-OHC 最近被发现是 EBI2的天然配体,能通过与 EBI2的结合,引导淋巴器官中 B 细胞迁移到 B 细胞与 T 细胞交界区域,促进 B 细胞以 T 细胞依赖的形式形成浆细胞,进而促进抗体的产生[63]

  • 与肿瘤细胞相似,T细胞在受到抗原激活后会进入快速增殖的效应阶段,效应T细胞上调胆固醇的生物合成过程中一系列关键代谢酶类的表达水平,同时下调胆固醇分解代谢[64]。关于胆固醇代谢在 CD8+ T 细胞介导的肿瘤免疫中的功能目前尚存在争议。一方面,利用小分子抑制 CD8+ T 细胞中胆固醇酯化酶 ACAT1 的活性,能提高细胞膜上的游离胆固醇水平,促进 CD8+ T 细胞抗原受体 (T Cell Receptor,TCR) 信号传导以及对肿瘤抗原的免疫应答[65]。主要由肝分泌的前蛋白转化酶枯草溶菌素 9 (Proprotein Convertase Subtilisin/Kexin Type9, PCSK9) 因其调控细胞膜表面蛋白LDLR表达而在治疗高胆固醇血症中发挥重要作用,最近研究发现,靶向 PCSK9 也能促进 T 细胞介导的肿瘤免疫反应:PCSK9 通过抑制 CD8+ T 细胞膜上 LDLR-TCR 的水平进而抑制 CD8+ T 细胞下游 TCR 信号通路传导及其效应功能[66];在肿瘤细胞中,PCSK9促进主要组织相容性复合体 1 (Major Histocompati‐ bility Complex 1,MHC1) 在溶酶体上的降解进而促进肿瘤细胞免疫逃逸,利用靶向 PCSK9 的中和抗体能够增强anti-PD-1的肿瘤免疫治疗效果[67]。然而,在富含胆固醇的肿瘤微环境中,胆固醇能通过激活 T 细胞中内质网压力,上调 PD-1、LAG3、 TIM3等免疫负调分子的表达,进而促进 CD8+ T细胞耗竭[68]。此外,胆固醇也参与调控 CD8+ T 细胞衰老。相较于年轻个体,年老小鼠的 CD8+ T 细胞含有更多胆固醇,利用 T 细胞缺失 Abca1/Abcg1 的小鼠,研究发现,过多胆固醇促进年老小鼠T细胞的衰老与凋亡[69]。最近的研究通过分析肿瘤微环境中胆固醇水平发现,相较于免疫抑制性的髓系细胞及肿瘤细胞,肿瘤浸润的T细胞处于胆固醇缺乏的状态,胆固醇不足抑制细胞毒性T细胞 (Cytotoxic T Cells,CTLs) 的增殖与存活,通过靶向LXRβ增强嵌合抗原受体 T (Chimeric Antigen Receptor TCell Immunotherapy,CAR-T) 细胞的胆固醇水平能够增强其清除肿瘤的能力[70]。同时,也有报道发现,增强肿瘤浸润 CD8+ T 细胞胆固醇代谢会抑制其肿瘤免疫功能,例如,肿瘤分泌的成纤维细胞生长因子 21 (Fibroblast Growth Factor 21, FGF21) 促进 CD8+ T 细胞胆固醇合成进而导致其功能紊乱[71];FGF1 细胞内结合蛋白 (FGF1 Intracellular-Binding Protein,FIBP) 缺失的T细胞通过降低胆固醇代谢进而增强其效应功能[72]

  • 羟固醇25-HC被报道通过抑制胞啃作用参与调控 CAR-T 细胞的肿瘤免疫反应,肿瘤来源因子通过激活转录因子3抑制CD8+ T细胞中Ch25h的表达促进肿瘤细胞对 CTLs的胞啃作用与免疫抑制,在 CAR-T 细胞中过表达 Ch25h 能够增强 CAR-T 细胞杀伤肿瘤的能力[73]。研究发现,T细胞在激活后会上调磺基转移酶SULT2B1b水平,该酶能对大多数羟固醇进行磺基化修饰从而使其转化成没有活性的形式,进而抑制羟固醇通过 LXR 对胆固醇的稳态调节作用,LXR的缺失会加剧T细胞增殖,而通过缺失 ABCG1 能消除羟固醇对 T 细胞增殖的抑制作用[74]。此外,在CD8+ T细胞亚群Tc9细胞中,羟固醇能通过与LXR作用抑制IL-9的分泌从而抑制Tc9 细胞的存活与效应功能[41]。在 CD4+ T 细胞中,羟固醇可能通过 LXR抑制细胞分泌 IL-17,从而抑制 CD4+ T 细胞向 Th17 的分化[75]。在 CD4+ T 细胞中,免疫抑制分子 IL-27 能促进 Ch25h 的表达,从而分泌25-HC抑制旁观T细胞的增殖,进而减少皮肤炎症发病程度[76]

  • 5 总结与展望

  • 胆固醇最早被发现参与细胞质膜的结构形成,调节细胞膜的完整性与流动性等功能。但最近的研究表明,胆固醇及其代谢产物在免疫细胞中发挥着重要作用[2640]

  • 巨噬细胞作为天然免疫反应中最重要的细胞类群,是机体抵御外源病原体的第一道防线,也是诱导适应性免疫的桥梁,在抵抗病原微生物的感染中发挥着重要的作用。巨噬细胞中胆固醇的不正常累积,促进了炎症小体的活化,导致了各种自身免疫性疾病的发生,如红斑狼疮、肾炎等。在病毒感染的过程中,巨噬细胞中的胆固醇代谢重编程,减少胆固醇的从头合成,促进IFN-Ⅰ的产生从而有利于抵抗和清除病毒。通过靶向胆固醇代谢通路中的关键代谢酶能够抑制病毒的复制和炎症因子的产生。

  • 除胆固醇代谢酶 CH25H、 DHCR7、 LSS、 CYP7A1或产物 25-HC、7-DHC、Lanosterol、胆汁酸等外,是否还有其他关键胆固醇代谢酶、胆固醇代谢产物,一方面促进巨噬细胞产生IFN-Ⅰ (清除病原微生物),另一方面抑制过度炎症 (阻断急性细胞因子风暴导致的败血症休克、或阻断慢性迁延性炎症),进而在抵御重度病毒细菌感染或感染相关肿瘤时,发挥双重的保护功能?此外,在感染过程中,巨噬细胞的吞噬、焦亡或凋亡也是控制感染的关键因素之一,但其与胆固醇代谢的关系还所知甚少。有哪些关键胆固醇代谢酶、胆固醇代谢产物能调控病原微生物诱导的巨噬细胞的吞噬和焦亡? 具体的分子机制是什么?这些代谢酶或产物的异常水平与感染程度或愈后是否有关联?这些都需要我们进一步去探索。

  • 关于胆固醇与罹患癌症风险的关系还没有统一的结论。有的研究发现,胆固醇能增加肿瘤发生概率,另一些研究发现胆固醇对肿瘤有保护作用,还有一些研究表明,胆固醇与罹患肿瘤风险之间不存在相关性[77-82]。广泛用于治疗动脉粥样硬化的他汀类药物被认为对乳腺癌既有治疗效果也有促进其发生的作用[83]。长期给予他汀类药物的临床试验也没有观察到肿瘤患者生存期的延长[84]。究其原因,一方面由于T细胞在增殖和活化过程需要胆固醇,他汀类药物可能抑制了 T 细胞的效应功能;另一方面,由于在 TAM 分化以及免疫抑制功能的维持中胆固醇的含量是降低的,他汀类药物可能促进了 TAM 的免疫抑制功能。胆固醇代谢在 CD8+ T 细胞介导的肿瘤免疫反应中的功能存在不同观点,这些不同的结论可能是由于胆固醇在肿瘤浸润 CD8+ T 细胞的不同亚群中的差异性作用,或者胆固醇与尚未鉴定出的胆固醇下游代谢产物在 CD8+ T 细胞介导的肿瘤免疫中发挥不同的功能,抑或不同位置的胆固醇 (比如胞外、细胞膜、胞质) 调控T细胞不同的生物学过程。此外,肿瘤组织中的 TAM 或 MDSC的发育与抑制功能的维持与胆固醇代谢重编程之间的联系也不是很清楚。

  • 探讨胆固醇代谢对免疫细胞功能的影响,不仅有助于对免疫应答本质及其调控机制深入解读,更为相关免疫性疾病、代谢性疾病、恶性肿瘤等疾病的药物及疫苗研发提供有效的分子靶标,并为探索临床防治新策略提供理论基础。免疫代谢是近年来学界一直关注的重点话题,免疫细胞中的代谢网络调控也将是接下来研究的重点。比如,在不同类型和不同活化状态的免疫细胞中,代谢途径是如何被精确调控和转换的?免疫细胞代谢重编程机制及代谢对免疫细胞功能的影响,如是否可以通过控制细胞代谢的关键节点或干预免疫细胞代谢调控其功能,使其发挥抗感染、抗肿瘤、抗自身免疫等作用?更好的理解免疫功能转变的代谢检验点,有助于为感染性疾病、肿瘤免疫和炎性疾病的免疫调节提供新的思路。

  • 参考文献

    • [1] HANUKOGLU I.Steroidogenic enzymes:Structure,function,and role in regulation of steroid hormone biosynthesis[J].J Steroid Biochem Mol Biol,1992,43(8):779-804.

    • [2] KULIG W,CWIKLIK L,JURKIEWICZ P,et al.Cholesterol oxidation products and their biological importance[J].Chem Phys Lipids,2016,199:144-160.

    • [3] REPA J J,MANGELSDORF D J.The role of orphan nuclear receptors in the regulation of cholesterol homeostasis [J].Annual Review of Cell and Developmental Biology,2000,16(1):459-481.

    • [4] ALTMANN S W,DAVIS H R,ZHU L J,et al.NiemannPick C1 Like 1 protein is critical for intestinal cholesterol absorption[J].Science,2004,303(5661):1201-1204.

    • [5] HU X,CHEN F,JIA L,et al.A gut-derived hormone regulates cholesterol metabolism[J].Cell,2024,187(7):1685-1700.e18.

    • [6] SEKIYA M,OSUGA J,IGARASHI M,et al.The role of neutral cholesterol ester hydrolysis in macrophage foam cells[J].J Atheroscler Thromb,2011,18(5):359-364.

    • [7] LUO J,YANG H,SONG B L.Mechanisms and regulation of cholesterol homeostasis[J].Nature Reviews:Molecular Cell Biology,2020,21(4):225-245.

    • [8] GUO C,CHI Z,JIANG D,et al.Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J].Immunity,2018,49(5):842-856.e7.

    • [9] BROWN M S,RADHAKRISHNAN A,GOLDSTEIN J L.Retrospective on cholesterol homeostasis:The central role of scap[J].Annual Review of Biochemistry,2018,87:783-807.

    • [10] ZELCER N,HONG C,BOYADJIAN R,et al.LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J].Science,2009,325(5936):100-104.

    • [11] WIDENMAIER S B,SNYDER N A,NGUYEN T B,et al.NRF1 is an ER membrane sensor that is central to cholesterol homeostasis[J].Cell,2017,171(5):1094-1109.

    • [12] GILL S,CHOW R,BROWN A J.Sterol regulators of cholesterol homeostasis and beyond:The oxysterol hypothesis revisited and revised[J].Progress in Lipid Research,2008,47(6):391-404.

    • [13] JAKOBSSON T,TREUTER E,GUSTAFSSON J A,et al.Liver X receptor biology and pharmacology:New pathways,challenges and opportunities[J].Trends in Pharmacological Sciences,2012,33(7):394-404.

    • [14] SIMMONS G E,PRUITT W M,PRUITT K.Diverse roles of SIRT1 in cancer biology and lipid metabolism[J].International Journal of Molecular Sciences,2015,16(1):950-965.

    • [15] COPPENS I.Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies[J].Nat Rev Microbiol,2013,11(12):823-835.

    • [16] CASTRILLO A,JOSEPH S B,VAIDYA S A,et al.Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism[J].Mol Cell,2003,12(4):805-816.

    • [17] BAEK S H,LI A H,SASSETTI C M.Metabolic regulation of mycobacterial growth and antibiotic sensitivity[J].PLoS Biol,2011,9(5):1001065.

    • [18] MACKENZIE J M,KHROMYKH A A,PARTON R G.Cholesterol manipulation by West Nile virus perturbs the cellular immune response[J].Cell Host & Microbe,2007,2(4):229-239.

    • [19] ROTHWELL C,LEBRETON A,YOUNG NG C,et al.Cholesterol biosynthesis modulation regulates dengue viral replication[J].Virology,2009,389(1-2):8-19.

    • [20] PETERSEN J,DRAKE M J,BRUCE E A,et al.The major cellular sterol regulatory pathway is required for Andes virus infection[J].PLoS Pathogens,2014,10(2):e1003911.

    • [21] RADHAKRISHNAN A,IKEDA Y,KWON H J,et al.Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:Oxysterols block transport by binding to Insig[J].P Natl Acad Sci USA,2007,104(16):6511-6518.

    • [22] YORK A G,WILLIAMS K J,ARGUS J P,et al.Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling[J].Cell,2015,163(7):1716-1729.

    • [23] BLANC M,HSIEH W Y,ROBERTSON K A,et al.Host defense against viral infection involves interferon mediated downregulation of sterol biosynthesis[J].PLoS Biology,2011,9(3):e1000598.

    • [24] LI C,DENG Y Q,WANG S,et al.25-hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model[J].Immunity,2017,46(3):446-456.

    • [25] XIAO J,LI W,ZHENG X,et al.Targeting 7-dehydrocho-lesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection[J].Immunity,2020,52(1):109-122.e6.

    • [26] TALL A R,YVAN-CHARVET L.Cholesterol,inflammation and innate immunity[J].Nat Rev Immunol,2015,15(2):104-116.

    • [27] BJORKBACKA H,KUNJATHOOR V V,MOORE K J,et al.Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J].Nat Med,2004,10(4):416-421.

    • [28] REBOLDI A,DANG E V,MCDONALD J G,et al.Inflammation 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon[J].Science,2014,345(6197):679-684.

    • [29] SPANN N J,GARMIRE L X,MCDONALD J G,et al.Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses[J].Cell,2012,151(1):138-52.

    • [30] IOANNOU G N.The Role of Cholesterol in the Patho‐ genesis of NASH[J].Trends Endocrinol Metab,2016,27(2):84-95.

    • [31] DANG E V,MCDONALD J G,RUSSELL D W,et al.Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation[J].Cell,2017,171(5):1057-1071.e11.

    • [32] AKULA M K,SHI M,JIANG Z,et al.Control of the innate immune response by the mevalonate pathway[J].Nature Immunology,2016,17(8):922-999.

    • [33] GUO C,XIE S,CHI Z,et al.Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J].Immunity,2016,45(4):802-816.

    • [34] SONG X,SUN X,OH S F,et al.Microbial bile acid metabolites modulate gut RORgamma(+)regulatory T cell homeostasis[J].Nature,2020,577(7790):410-415.

    • [35] BEKKERING S,ARTS R J W,NOVAKOVIC B,et al.Metabolic induction of trained immunity through the mevalonate pathway[J].Cell,2018,172(1-2):135-146.e9.

    • [36] WESTERTERP M,GAUTIER E L,GANDA A,et al.Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity[J].Cell Metabolism,2017,25(6):1294-1304.e6.

    • [37] KOVAROVA M,WASSIF C A,ODOM S,et al.Cholesterol deficiency in a mouse model of Smith-LemliOpitz syndrome reveals increased mast cell responsiveness [J].J Exp Med,2006,203(5):1161-1171.

    • [38] ACHOUR A,LANDUREAU J C,SALERNO-GON‐ CALVES R,et al.Restoration of immune response by a cationic amphiphilic drug(AY 9944)in vitro:A new approach To chemotherapy against human immunodeficiency virus type 1[J].Antimicrobial Agents and Chemotherapy,1998,42(10):2482-2491.

    • [39] ARALDI E,FERNANDEZ-FUERTES M,CANFRANDUQUE A,et al.Lanosterol modulates TLR4-mediated innate immune responses in macrophages[J].Cell Reports,2017,19(13):2743-2755.

    • [40] HUANG B,SONG B L,XU C.Cholesterol metabolism in cancer:Mechanisms and therapeutic opportunities[J].Nature Metabolism,2020,2(2):132-141.

    • [41] MA X,BI E,HUANG C,et al.Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity[J].The Journal of Experimental Medicine,2018,215(6):1555-1569.

    • [42] LEWIS C A,BRAULT C,PECK B,et al.SREBP maintains lipid biosynthesis and viability of cancer cells under lipid-and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J].Oncogene,2015,34(40):5128-5140.

    • [43] GARCIA-BERMUDEZ J,BAUDRIER L,BAYRAKTAR E C,et al.Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death[J].Nature,2019,567(7746):118-122.

    • [44] KONSTANTINOPOULOS P A,KARAMOUZIS M V,PAPAVASSILIOU A G.Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets[J].Nature Reviews Drug Discovery,2007,6(7):541-555.

    • [45] KAYMAK I,MAIER C R,SCHMITZ W,et al.Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to metabolic stress[J].Cancer Research,2020,80(2):189-203.

    • [46] GUO C,WAN R,HE Y,et al.Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer[J].Nat Cancer,2022,3(5):614-628.

    • [47] NELSON E R,CHANG C Y,MCDONNELL D P.Cholesterol and breast cancer pathophysiology[J].Trends in Endocrinology and Metabolism,2014,25(12):649-655.

    • [48] CYSTER J G,DANG E V,REBOLDI A,et al.25-Hydroxycholesterols in innate and adaptive immunity[J].Nature Reviews Immunology,2014,14(11):731-743.

    • [49] YAMANAKA K,SAITO Y,YAMAMORI T,et al.24(S)-hydroxycholesterol induces neuronal cell death through necroptosis,a form of programmed necrosis[J].The Journal of Biological Chemistry,2011,286(28):24666-24673.

    • [50] DAMBAL S,ALFAQIH M,SANDERS S,et al.27-hydroxycholesterol impairs plasma membrane lipid raft signaling as evidenced by inhibition of IL6-JAK-STAT3 signaling in prostate cancer cells[J].Molecular Cancer Research,2020,18(5):671-684.

    • [51] NELSON E R,WARDELL S E,JASPER J S,et al.27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology[J].Science,2013,342(6162):1094-1098.

    • [52] GIBSON D A,COLLINS F,COUSINS F L,et al.The impact of 27-hydroxycholesterol on endometrial cancer proliferation[J].Endocrine-Related Cancer,2018,25(4):381-391.

    • [53] WANG S,YAO Y,RAO C,et al.25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-kappaB signaling pathway[J].Int J Oncol,2019,54(3):966-980.

    • [54] CHEN L,ZHANG L,XIAN G,et al.25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells[J].Biochemical and Biophysical Research Communications,2017,484(4):857-863.

    • [55] DEVALARAJA S,TO T K J,FOLKERT I W,et al.Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression[J].Cell,2020,180(6):1098-1114.e16.

    • [56] EIBINGER G,FAULER G,BERNHART E,et al.On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines.Implications for chemotactic monocyte recruitment[J].Experimental Cell Research,2013,319(12):1828-1838.

    • [57] XIAO J,WANG S,CHEN L L,et al.25-hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages [J].Immunity,2024,57(5):1087-1104.e7.

    • [58] ORTIZ A,GUI J,ZAHEDI F,et al.An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles[J].Cancer Cell,2019,35(1):33-45.e6.

    • [59] VILLABLANCA E J,RACCOSTA L,ZHOU D,et al.Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses[J].Nature Medicine,2010,16(1):98-105.

    • [60] PLEBANEK M P,XUE Y,NGUYEN Y V,et al.A lactateSREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression[J].Sci Immunol,2024,9(95):eadi4191.

    • [61] QIN W H,YANG Z S,LI M,et al.High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice[J].Gastroenterology,2020,158(6):1713-1727.

    • [62] BAUMAN D R,BITMANSOUR A D,MCDONALD J G,et al.25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(39):16764-16769.

    • [63] SUN S,LIU C.7alpha,25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases[J].Frontiers in Pharmacology,2015,6:60.

    • [64] KIDANI Y,ELSAESSER H,HOCK M B,et al.Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J].Nature Immunology,2013,14(5):489-499.

    • [65] YANG W,BAI Y,XIONG Y,et al.Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J].Nature,2016,531(7596):651-655.

    • [66] YUAN J,CAI T,ZHENG X,et al.Potentiating CD8(+)T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling[J].Protein & Cell,2021,12(4):240-260.

    • [67] LIU X,BAO X,HU M,et al.Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer[J].Nature,2020,588(7839):693-698.

    • [68] MA X,BI E,LU Y,et al.Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J].Cell Metabolism,2019,30(1):143-156.e5.

    • [69] BAZIOTI V,LA ROSE A M,MAASSEN S,et al.T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice[J].Nature Communications,2022,13(1):3799.

    • [70] YAN C,ZHENG L,JIANG S,et al.Exhaustionassociated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity[J].Cancer Cell,2023,41(7):1276-1293.e11.

    • [71] HU C,QIAO W,LI X,et al.Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+ T cells[J].Cell Metabolism,2024,36(3):630-647.e8.

    • [72] ZHANG Y,VU T,PALMER D C,et al.A T cell resilience model associated with response to immunotherapy in multiple tumor types[J].Nature Medicine,2022,28(7):1421-1431.

    • [73] LU Z,MCBREARTY N,CHEN J Y,et al.ATF3 and CH25H regulate effector trogocytosis and anti-tumor activities of endogenous and immunotherapeutic cytotoxic T lymphocytes[J].Cell Metabolism,2022,34(9):1342-1358.e7.

    • [74] BENSINGER S J,BRADLEY M N,JOSEPH S B,et al.LXR signaling couples sterol metabolism to proliferation in the acquired immune response[J].Cell,2008,134(1):97-111.

    • [75] XU J,WAGONER G,DOUGLAS J C,et al.Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity[J].Journal of Leukocyte Biology,2009,86(2):401-409.

    • [76] TAKAHASHI H,NOMURA H,IRIKI H,et al.Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell-mediated inflammation in the skin[J].Sci Immunol,2021,6(64):eabb6444.

    • [77] ALROSAN A Z,HEILAT G B,AL SUBEH Z Y,et al.The effects of statin therapy on brain tumors,particularly glioma:A review[J].Anticancer Drugs,2023,34(9):985-994.

    • [78] CAO D,LIU H.Dysregulated cholesterol regulatory genes in hepatocellular carcinoma[J].Eur J Med Res,2023,28(1):580.

    • [79] CORADINI D.Impact of De Novo cholesterol biosynthesis on the initiation and progression of breast cancer[J].Biomolecules,2024,14(1).

    • [80] HE X,LAN H,JIN K,et al.Cholesterol in colorectal cancer:An essential but tumorigenic precursor?[J].Front Oncol,2023,13:1276654.

    • [81] KUZU O F,NOORY M A,ROBERTSON G P.The role of cholesterol in cancer[J].Cancer Res,2016,76(8):2063-2070.

    • [82] REBELO A,KLEEFF J,SUNAMI Y.Cholesterol metabolism in pancreatic cancer[J].Cancers(Basel),2023,15(21):5177.

    • [83] BAEK A E,NELSON E R.The contribution of cholesterol and its metabolites to the pathophysiology of breast cancer [J].Horm Cancer,2016,7(4):219-228.

    • [84] SNAEBJORNSSON M T,JANAKI-RAMAN S,SCHULZE A.Greasing the wheels of the cancer machine:The role of lipid metabolism in cancer[J].Cell Metabolism,2020,31(1):62-76.

  • 参考文献

    • [1] HANUKOGLU I.Steroidogenic enzymes:Structure,function,and role in regulation of steroid hormone biosynthesis[J].J Steroid Biochem Mol Biol,1992,43(8):779-804.

    • [2] KULIG W,CWIKLIK L,JURKIEWICZ P,et al.Cholesterol oxidation products and their biological importance[J].Chem Phys Lipids,2016,199:144-160.

    • [3] REPA J J,MANGELSDORF D J.The role of orphan nuclear receptors in the regulation of cholesterol homeostasis [J].Annual Review of Cell and Developmental Biology,2000,16(1):459-481.

    • [4] ALTMANN S W,DAVIS H R,ZHU L J,et al.NiemannPick C1 Like 1 protein is critical for intestinal cholesterol absorption[J].Science,2004,303(5661):1201-1204.

    • [5] HU X,CHEN F,JIA L,et al.A gut-derived hormone regulates cholesterol metabolism[J].Cell,2024,187(7):1685-1700.e18.

    • [6] SEKIYA M,OSUGA J,IGARASHI M,et al.The role of neutral cholesterol ester hydrolysis in macrophage foam cells[J].J Atheroscler Thromb,2011,18(5):359-364.

    • [7] LUO J,YANG H,SONG B L.Mechanisms and regulation of cholesterol homeostasis[J].Nature Reviews:Molecular Cell Biology,2020,21(4):225-245.

    • [8] GUO C,CHI Z,JIANG D,et al.Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J].Immunity,2018,49(5):842-856.e7.

    • [9] BROWN M S,RADHAKRISHNAN A,GOLDSTEIN J L.Retrospective on cholesterol homeostasis:The central role of scap[J].Annual Review of Biochemistry,2018,87:783-807.

    • [10] ZELCER N,HONG C,BOYADJIAN R,et al.LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor[J].Science,2009,325(5936):100-104.

    • [11] WIDENMAIER S B,SNYDER N A,NGUYEN T B,et al.NRF1 is an ER membrane sensor that is central to cholesterol homeostasis[J].Cell,2017,171(5):1094-1109.

    • [12] GILL S,CHOW R,BROWN A J.Sterol regulators of cholesterol homeostasis and beyond:The oxysterol hypothesis revisited and revised[J].Progress in Lipid Research,2008,47(6):391-404.

    • [13] JAKOBSSON T,TREUTER E,GUSTAFSSON J A,et al.Liver X receptor biology and pharmacology:New pathways,challenges and opportunities[J].Trends in Pharmacological Sciences,2012,33(7):394-404.

    • [14] SIMMONS G E,PRUITT W M,PRUITT K.Diverse roles of SIRT1 in cancer biology and lipid metabolism[J].International Journal of Molecular Sciences,2015,16(1):950-965.

    • [15] COPPENS I.Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies[J].Nat Rev Microbiol,2013,11(12):823-835.

    • [16] CASTRILLO A,JOSEPH S B,VAIDYA S A,et al.Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism[J].Mol Cell,2003,12(4):805-816.

    • [17] BAEK S H,LI A H,SASSETTI C M.Metabolic regulation of mycobacterial growth and antibiotic sensitivity[J].PLoS Biol,2011,9(5):1001065.

    • [18] MACKENZIE J M,KHROMYKH A A,PARTON R G.Cholesterol manipulation by West Nile virus perturbs the cellular immune response[J].Cell Host & Microbe,2007,2(4):229-239.

    • [19] ROTHWELL C,LEBRETON A,YOUNG NG C,et al.Cholesterol biosynthesis modulation regulates dengue viral replication[J].Virology,2009,389(1-2):8-19.

    • [20] PETERSEN J,DRAKE M J,BRUCE E A,et al.The major cellular sterol regulatory pathway is required for Andes virus infection[J].PLoS Pathogens,2014,10(2):e1003911.

    • [21] RADHAKRISHNAN A,IKEDA Y,KWON H J,et al.Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi:Oxysterols block transport by binding to Insig[J].P Natl Acad Sci USA,2007,104(16):6511-6518.

    • [22] YORK A G,WILLIAMS K J,ARGUS J P,et al.Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling[J].Cell,2015,163(7):1716-1729.

    • [23] BLANC M,HSIEH W Y,ROBERTSON K A,et al.Host defense against viral infection involves interferon mediated downregulation of sterol biosynthesis[J].PLoS Biology,2011,9(3):e1000598.

    • [24] LI C,DENG Y Q,WANG S,et al.25-hydroxycholesterol protects host against zika virus infection and its associated microcephaly in a mouse model[J].Immunity,2017,46(3):446-456.

    • [25] XIAO J,LI W,ZHENG X,et al.Targeting 7-dehydrocho-lesterol reductase integrates cholesterol metabolism and IRF3 activation to eliminate infection[J].Immunity,2020,52(1):109-122.e6.

    • [26] TALL A R,YVAN-CHARVET L.Cholesterol,inflammation and innate immunity[J].Nat Rev Immunol,2015,15(2):104-116.

    • [27] BJORKBACKA H,KUNJATHOOR V V,MOORE K J,et al.Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways[J].Nat Med,2004,10(4):416-421.

    • [28] REBOLDI A,DANG E V,MCDONALD J G,et al.Inflammation 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon[J].Science,2014,345(6197):679-684.

    • [29] SPANN N J,GARMIRE L X,MCDONALD J G,et al.Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses[J].Cell,2012,151(1):138-52.

    • [30] IOANNOU G N.The Role of Cholesterol in the Patho‐ genesis of NASH[J].Trends Endocrinol Metab,2016,27(2):84-95.

    • [31] DANG E V,MCDONALD J G,RUSSELL D W,et al.Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation[J].Cell,2017,171(5):1057-1071.e11.

    • [32] AKULA M K,SHI M,JIANG Z,et al.Control of the innate immune response by the mevalonate pathway[J].Nature Immunology,2016,17(8):922-999.

    • [33] GUO C,XIE S,CHI Z,et al.Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J].Immunity,2016,45(4):802-816.

    • [34] SONG X,SUN X,OH S F,et al.Microbial bile acid metabolites modulate gut RORgamma(+)regulatory T cell homeostasis[J].Nature,2020,577(7790):410-415.

    • [35] BEKKERING S,ARTS R J W,NOVAKOVIC B,et al.Metabolic induction of trained immunity through the mevalonate pathway[J].Cell,2018,172(1-2):135-146.e9.

    • [36] WESTERTERP M,GAUTIER E L,GANDA A,et al.Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity[J].Cell Metabolism,2017,25(6):1294-1304.e6.

    • [37] KOVAROVA M,WASSIF C A,ODOM S,et al.Cholesterol deficiency in a mouse model of Smith-LemliOpitz syndrome reveals increased mast cell responsiveness [J].J Exp Med,2006,203(5):1161-1171.

    • [38] ACHOUR A,LANDUREAU J C,SALERNO-GON‐ CALVES R,et al.Restoration of immune response by a cationic amphiphilic drug(AY 9944)in vitro:A new approach To chemotherapy against human immunodeficiency virus type 1[J].Antimicrobial Agents and Chemotherapy,1998,42(10):2482-2491.

    • [39] ARALDI E,FERNANDEZ-FUERTES M,CANFRANDUQUE A,et al.Lanosterol modulates TLR4-mediated innate immune responses in macrophages[J].Cell Reports,2017,19(13):2743-2755.

    • [40] HUANG B,SONG B L,XU C.Cholesterol metabolism in cancer:Mechanisms and therapeutic opportunities[J].Nature Metabolism,2020,2(2):132-141.

    • [41] MA X,BI E,HUANG C,et al.Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity[J].The Journal of Experimental Medicine,2018,215(6):1555-1569.

    • [42] LEWIS C A,BRAULT C,PECK B,et al.SREBP maintains lipid biosynthesis and viability of cancer cells under lipid-and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J].Oncogene,2015,34(40):5128-5140.

    • [43] GARCIA-BERMUDEZ J,BAUDRIER L,BAYRAKTAR E C,et al.Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death[J].Nature,2019,567(7746):118-122.

    • [44] KONSTANTINOPOULOS P A,KARAMOUZIS M V,PAPAVASSILIOU A G.Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets[J].Nature Reviews Drug Discovery,2007,6(7):541-555.

    • [45] KAYMAK I,MAIER C R,SCHMITZ W,et al.Mevalonate pathway provides ubiquinone to maintain pyrimidine synthesis and survival in p53-deficient cancer cells exposed to metabolic stress[J].Cancer Research,2020,80(2):189-203.

    • [46] GUO C,WAN R,HE Y,et al.Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer[J].Nat Cancer,2022,3(5):614-628.

    • [47] NELSON E R,CHANG C Y,MCDONNELL D P.Cholesterol and breast cancer pathophysiology[J].Trends in Endocrinology and Metabolism,2014,25(12):649-655.

    • [48] CYSTER J G,DANG E V,REBOLDI A,et al.25-Hydroxycholesterols in innate and adaptive immunity[J].Nature Reviews Immunology,2014,14(11):731-743.

    • [49] YAMANAKA K,SAITO Y,YAMAMORI T,et al.24(S)-hydroxycholesterol induces neuronal cell death through necroptosis,a form of programmed necrosis[J].The Journal of Biological Chemistry,2011,286(28):24666-24673.

    • [50] DAMBAL S,ALFAQIH M,SANDERS S,et al.27-hydroxycholesterol impairs plasma membrane lipid raft signaling as evidenced by inhibition of IL6-JAK-STAT3 signaling in prostate cancer cells[J].Molecular Cancer Research,2020,18(5):671-684.

    • [51] NELSON E R,WARDELL S E,JASPER J S,et al.27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology[J].Science,2013,342(6162):1094-1098.

    • [52] GIBSON D A,COLLINS F,COUSINS F L,et al.The impact of 27-hydroxycholesterol on endometrial cancer proliferation[J].Endocrine-Related Cancer,2018,25(4):381-391.

    • [53] WANG S,YAO Y,RAO C,et al.25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-kappaB signaling pathway[J].Int J Oncol,2019,54(3):966-980.

    • [54] CHEN L,ZHANG L,XIAN G,et al.25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells[J].Biochemical and Biophysical Research Communications,2017,484(4):857-863.

    • [55] DEVALARAJA S,TO T K J,FOLKERT I W,et al.Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression[J].Cell,2020,180(6):1098-1114.e16.

    • [56] EIBINGER G,FAULER G,BERNHART E,et al.On the role of 25-hydroxycholesterol synthesis by glioblastoma cell lines.Implications for chemotactic monocyte recruitment[J].Experimental Cell Research,2013,319(12):1828-1838.

    • [57] XIAO J,WANG S,CHEN L L,et al.25-hydroxycholesterol regulates lysosome AMP kinase activation and metabolic reprogramming to educate immunosuppressive macrophages [J].Immunity,2024,57(5):1087-1104.e7.

    • [58] ORTIZ A,GUI J,ZAHEDI F,et al.An interferon-driven oxysterol-based defense against tumor-derived extracellular vesicles[J].Cancer Cell,2019,35(1):33-45.e6.

    • [59] VILLABLANCA E J,RACCOSTA L,ZHOU D,et al.Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses[J].Nature Medicine,2010,16(1):98-105.

    • [60] PLEBANEK M P,XUE Y,NGUYEN Y V,et al.A lactateSREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression[J].Sci Immunol,2024,9(95):eadi4191.

    • [61] QIN W H,YANG Z S,LI M,et al.High serum levels of cholesterol increase antitumor functions of nature killer cells and reduce growth of liver tumors in mice[J].Gastroenterology,2020,158(6):1713-1727.

    • [62] BAUMAN D R,BITMANSOUR A D,MCDONALD J G,et al.25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(39):16764-16769.

    • [63] SUN S,LIU C.7alpha,25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases[J].Frontiers in Pharmacology,2015,6:60.

    • [64] KIDANI Y,ELSAESSER H,HOCK M B,et al.Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J].Nature Immunology,2013,14(5):489-499.

    • [65] YANG W,BAI Y,XIONG Y,et al.Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism[J].Nature,2016,531(7596):651-655.

    • [66] YUAN J,CAI T,ZHENG X,et al.Potentiating CD8(+)T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling[J].Protein & Cell,2021,12(4):240-260.

    • [67] LIU X,BAO X,HU M,et al.Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer[J].Nature,2020,588(7839):693-698.

    • [68] MA X,BI E,LU Y,et al.Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment[J].Cell Metabolism,2019,30(1):143-156.e5.

    • [69] BAZIOTI V,LA ROSE A M,MAASSEN S,et al.T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice[J].Nature Communications,2022,13(1):3799.

    • [70] YAN C,ZHENG L,JIANG S,et al.Exhaustionassociated cholesterol deficiency dampens the cytotoxic arm of antitumor immunity[J].Cancer Cell,2023,41(7):1276-1293.e11.

    • [71] HU C,QIAO W,LI X,et al.Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8+ T cells[J].Cell Metabolism,2024,36(3):630-647.e8.

    • [72] ZHANG Y,VU T,PALMER D C,et al.A T cell resilience model associated with response to immunotherapy in multiple tumor types[J].Nature Medicine,2022,28(7):1421-1431.

    • [73] LU Z,MCBREARTY N,CHEN J Y,et al.ATF3 and CH25H regulate effector trogocytosis and anti-tumor activities of endogenous and immunotherapeutic cytotoxic T lymphocytes[J].Cell Metabolism,2022,34(9):1342-1358.e7.

    • [74] BENSINGER S J,BRADLEY M N,JOSEPH S B,et al.LXR signaling couples sterol metabolism to proliferation in the acquired immune response[J].Cell,2008,134(1):97-111.

    • [75] XU J,WAGONER G,DOUGLAS J C,et al.Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity[J].Journal of Leukocyte Biology,2009,86(2):401-409.

    • [76] TAKAHASHI H,NOMURA H,IRIKI H,et al.Cholesterol 25-hydroxylase is a metabolic switch to constrain T cell-mediated inflammation in the skin[J].Sci Immunol,2021,6(64):eabb6444.

    • [77] ALROSAN A Z,HEILAT G B,AL SUBEH Z Y,et al.The effects of statin therapy on brain tumors,particularly glioma:A review[J].Anticancer Drugs,2023,34(9):985-994.

    • [78] CAO D,LIU H.Dysregulated cholesterol regulatory genes in hepatocellular carcinoma[J].Eur J Med Res,2023,28(1):580.

    • [79] CORADINI D.Impact of De Novo cholesterol biosynthesis on the initiation and progression of breast cancer[J].Biomolecules,2024,14(1).

    • [80] HE X,LAN H,JIN K,et al.Cholesterol in colorectal cancer:An essential but tumorigenic precursor?[J].Front Oncol,2023,13:1276654.

    • [81] KUZU O F,NOORY M A,ROBERTSON G P.The role of cholesterol in cancer[J].Cancer Res,2016,76(8):2063-2070.

    • [82] REBELO A,KLEEFF J,SUNAMI Y.Cholesterol metabolism in pancreatic cancer[J].Cancers(Basel),2023,15(21):5177.

    • [83] BAEK A E,NELSON E R.The contribution of cholesterol and its metabolites to the pathophysiology of breast cancer [J].Horm Cancer,2016,7(4):219-228.

    • [84] SNAEBJORNSSON M T,JANAKI-RAMAN S,SCHULZE A.Greasing the wheels of the cancer machine:The role of lipid metabolism in cancer[J].Cell Metabolism,2020,31(1):62-76.

  • 关闭