en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

黄波(1969-),男,湖北京山人,教授,主要从事肿瘤免疫、肿瘤生物治疗、肿瘤生物学、肿瘤代谢等研究,E-mail:tjhuangbo@hotmail.com

中图分类号:Q591.4

文献标识码:A

文章编号:2096-8965(2024)02-0030-06

DOI:10.12287/j.issn.2096-8965.20240204

参考文献 1
LITWACK G.Glycogen and glycogenolysis[M].Human Biochemistry,2018,161-181.
参考文献 2
ROACH P J,DEPAOLI-ROACH A A,HURLEY T D,et al.Glycogen and its metabolism:Some new developments and old themes[J].Biochem J,2012,441(3):763-787.
参考文献 3
ADEVA-ANDANY M M,GONZÁLEZ-LUCÁN M,DONAPETRY-GARCÍA C,et al.Glycogen metabolism in humans[J].BBA Clin,2016,5:85-100.
参考文献 4
CHIKWANA V M,KHANNA M,BASKARAN S,et al.Structural basis for 2'-phosphate incorporation into glycogen by glycogen synthase[J].Proc Natl Acad Sci USA,2013,110(52):20976-20981.
参考文献 5
VILLAR-PALASI C,LARNER J.Glycogen metabolism and glycolytic enzymes[J].Annu Rev Biochem,1970,39:639-672.
参考文献 6
KANUNGO S,WELLS K,TRIBETT T,et al.Glycogen metabolism and glycogen storage disorders[J].Ann Transl Med,2018,6(24):474.
参考文献 7
LIU X,GILBERT R G.Normal and abnormal glycogen structure:A review[J].Carbohydr Polym,2024,338:122195.
参考文献 8
DUSEJA A,SINGH S P,SARASWAT V A,et al.Nonalcoholic fatty liver disease and metabolic syndromeposition paper of the Indian national association for the study of the liver,endocrine society of India,Indian college of cardiology and Indian society of gastroenterology[J].J Clin Exp Hepatol,2015,5(1):51-68.
参考文献 9
GRUNDY S M,CLEEMAN J I,DANIELS S R,et al.Diagnosis and management of the metabolic syndrome:An American Heart Association/National Heart,Lung,and Blood Institute Scientific Statement[J].Circulation,2005,112(17):2735-2752.
参考文献 10
NG C H,WONG Z Y,CHEW N W S,et al.Hypertension is prevalent in non-alcoholic fatty liver disease and increases all-cause and cardiovascular mortality[J].Front Cardiovasc Med,2022,9:942753.
参考文献 11
Third report of the National Cholesterol Education Program(NCEP)expert panel on detection,evaluation,and treatment of high blood cholesterol in adults(Adult Treatment Panel Ⅲ)final report[R].Circulation,2002,6(25):3143-3421.
参考文献 12
GOLABI P,PAIK J M,ALQAHTANI S,et al.Burden of nonalcoholic fatty liver disease in Asia,the Middle East and North Africa:Data from Global Burden of Disease 2009-2019[J].J Hepatol,2021,75(4):795-809.
参考文献 13
GBD 2019 DIABETES MORTALITY COLLABORA‐TORS.Diabetes mortality and trends before 25 years of age:An analysis of the global burden of disease study 2019[J].Lancet Diabetes Endocrinol,2022,10(3):177-192.
参考文献 14
TOH J Z K,PAN X H,TAY P W L,et al.A meta-analysis on the global prevalence,risk factors and screening of coronary heart disease in nonalcoholic fatty liver disease [J].Clin Gastroenterol Hepatol,2022,20(11):2462-2473.
参考文献 15
CHEW N W,FIGTREE G A,KONG G,et al.Hepatic steatosis and advanced fibrosis are independent predictors of mortality in acute myocardial infarction without standard modifiable risk factors[J].Diabetes Obes Metab,2022,24(12):2454-2458.
参考文献 16
TAY P W L,NG C H,LIN S Y,et al.Placebo adverse events in non-alcoholic steatohepatitis clinical trials:A pooled analysis of 2 944 participants[J].Am J Gastroenterol,2023,118(4):645-653.
参考文献 17
KONG G,CHIN Y H,CHONG B,et al.Higher mortality in acute coronary syndrome patients without standard modifiable risk factors:Results from a global metaanalysis of 1 285 722 patients[J].Int J Cardiol,2023,371:432-440.
参考文献 18
SHIEH J M,WU H T,CHENG K C,et al.Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells[J].J Pineal Res,2009,47(4):339-344.
参考文献 19
KEINAN O,VALENTINE J M,XIAO H,et al.Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes[J].Nature,2021,599(7884):296-301.
参考文献 20
CHEN J,ZHOU Y,LIU Z,et al.Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG[J].Science,2024,383(6684):eadi3332.
参考文献 21
IWAYAMA K,SEOL J,TOKUYAMA K.Exercise timing matters for glycogen metabolism and accumulated fat oxidation over 24 h[J].Nutrients,2023,15(5):1109.
参考文献 22
ZOIS C E,HARRIS A L.Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy[J].J Mol Med(Berl),2016,94(2):137-154.
参考文献 23
DAUER P,LENGYEL E.New roles for glycogen in tumor progression[J].Trends Cancer,2019,5(7):396-399.
参考文献 24
TANG K,ZHU L,CHEN J,et al.Hypoxia promotes breast cancer cell growth by activating a glycogen metabolic program[J].Cancer Res,2021,81(19):4949-4963.
参考文献 25
ZHOU N,CHEN J,LING Z,et al.Aryl hydrocarbon receptor sulfenylation promotes glycogenolysis and rescues cancer chemoresistance[J].J Clin Invest,2023,133(24).
参考文献 26
LIU Q,LI J,ZHANG W,et al.Glycogen accumulation and phase separation drives liver tumor initiation[J].Cell,2021,184(22):5559-5576.e19.
参考文献 27
ZHANG H,MA J,TANG K,et al.Beyond energy storage:Roles of glycogen metabolism in health and disease[J].FEBS J,2021,288(12):3772-3783.
参考文献 28
MA R,JI T,ZHANG H,et al.A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells[J].Nat Cell Biol,2018,20(1):21-27.
参考文献 29
ZHANG H,LIU J,YANG Z,et al.TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory T cells[J].Mol Cell,2022,82(16):3077-3088.e6.
参考文献 30
SADIKU P,WILLSON J A,RYAN E M,et al.Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis[J].Cell Metab,2021,33(2):411-423.e4.
参考文献 31
CASSIDY F C,KEDIA-MEHTA N,BERGIN R,et al.Glycogen-fuelled metabolism supports rapid mucosalassociated invariant T cell responses[J].Proc Natl Acad Sci U S A,2023,120(25):e2300566120.
参考文献 32
THWE P M,PELGROM L R,COOPER R,et al.CellIntrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses[J].Cell Metab,2017,26(3):558-567.e5.
参考文献 33
MA J,WEI K,LIU J,et al.Glycogen metabolism regulates macrophage-mediated acute inflammatory responses [J].Nat Commun,2020,11(1):1769.
参考文献 34
MELIS D,CARBONE F,MINOPOLI G,et al.Cutting edge:Increased autoimmunity risk in glycogen storage disease type 1b is associated with a reduced engagement of glycolysis in T Cells and an impaired regulatory T cell function[J].J Immunol,2017,198(10):3803-3808.
参考文献 35
GONZALEZ J T,FUCHS C J,BETTS J A,et al.Liver glycogen metabolism during and after prolonged endurancetype exercise[J].Am J Physiol Endocrinol Metab,2016,311(3):E543-553.
参考文献 36
BOUSKILA M,HUNTER R W,IBRAHIM A F,et al.Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle[J].Cell Metab,2010,12(5):456-466.
参考文献 37
NAGINI S,SOPHIA J,MISHRA R.Glycogen synthase kinases:Moonlighting proteins with theranostic potential in cancer[J].Semin Cancer Biol,2019,56:25-36.
参考文献 38
CAPOZZI M E,D'ALESSIO D A,CAMPBELL J E.The past,present,and future physiology and pharmacology of glucagon[J].Cell Metab,2022,34(11):1654-1674.
参考文献 39
ZHANG X,YIN H,ZHANG X,et al.N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA[J].Nat Commun,2022,13(1):7038.
目录contents

    摘要

    糖原是由葡萄糖分子通过α-1,4-糖苷键和α-1,6-糖苷键连接而成的多糖,是人体内主要的储能形式之一。糖原主要储存在肝 (肝糖原) 和骨骼肌 (肌糖原) 中,同时在心肌、肾、脑等组织中也少量存在。机体需要能量时,肝糖原可以分解成葡萄糖,提供给身体各个组织和器官利用,肌糖原则在运动时被骨骼肌消耗供能。除了在维持血糖水平和提供能量方面的重要作用外,糖原代谢还参与调控细胞分化、信号传导和氧化还原等生物学过程。本文主要探讨了糖原代谢在代谢性疾病、肿瘤和免疫细胞应答等过程中的调控机制的最新研究进展,同时总结了糖原代谢的新型调控模式和机制。

    Abstract

    Glycogen, a polysaccharide composed of glucose molecules linked by α-1,4-glycosidic and α-1,6- glycosidic bonds, is one of the primary energy storage forms in human body. Glycogen is primarily stored in the liver (as liver glycogen) and skeletal muscles (as muscle glycogen), with smaller amounts present in tissues such as myocardium, kidneys, and brain. When the body requires energy, liver glycogen can be broken down into glucose, which is then utilized by various tissues and organs. During exercise, muscle glycogen is consumed by skeletal muscles to meet the energy demands of the muscles. Beyond its crucial roles in maintaining blood glucose levels and providing energy, recent research has revealed that glycogen metabolism also regulates biological processes such as cell differentiation, signal transduction, and redox reactions. This review focuses on the latest research advancements in the regulatory mechanisms of glycogen metabolism in metabolic diseases, tumors, and immune cell responses, highlighting new regulatory modes and mechanisms.

  • 葡萄糖是机体生命活动的能量供应主要来源,当葡萄糖供应过剩时,其大部分通过中间代谢产物磷酸二羟丙酮和乙酰辅酶A等合成甘油三酯堆积于脂肪组织,还有小部分用于合成糖原。糖原是带有支链的葡萄糖多聚体,是机体内一种糖的储存形式。糖原分子结构呈现树枝状,呈现中心分支多、外区分支较少的模式[1-6]

  • 糖原的合成并非是葡萄糖简单的聚合,其过程依赖复杂的多步酶促反应。糖原的合成起始于糖酵解中间代谢产物葡萄糖-6-磷酸 (Glucose-6-Phosphate,G6P),G6P 在磷酸葡萄糖变位酶的催化下生成葡萄糖-1-磷酸 (Glucose-1-Phosphate, G1P)。G1P 在尿苷二磷酸葡萄糖焦磷酸化酶的作用下与尿苷三磷酸反应,生成尿苷二磷酸葡萄糖 (Uridine Diphosphate Glucose,UDPG)和焦磷酸[2]。 UDPG为体内合成糖原的活性供体,此步反应生成的焦磷酸迅速被焦磷酸酶水解,促使反应向糖原合成方向进行。然而,UDPG中葡萄糖基也不能与游离葡萄糖直接连接,而只能与糖原引物相连。糖原引物为葡萄糖残基聚合较少的糖链 (一般小于 15 个葡萄糖残基),其合成依赖糖原蛋白 (自身糖基化酶),糖原蛋白将 UDPG 中的葡萄糖分子转移到自身的酪氨酸残基上,作为引物形成寡糖链。在糖原合酶的作用下,UDPG将葡萄糖基转移至糖原引物的非还原末端,形成 α-1,4-糖苷键,此反应为不可逆过程。糖原合酶是糖原合成中的关键酶,其可以延伸糖链的长度,但不能形成分支。当糖链长度达到12~18个葡萄糖基时,糖原分支酶将一段短糖链 (约6~8个葡萄糖基) 转移到附近的糖链上,此时以 α-1,6-糖苷键相连,进而形成分支。分支除了维持糖原的稳定外,还提升其水溶性,并增加了非还原端的数目,以便磷酸化酶能迅速分解糖原来供应能量。

  • 在糖原分解时,糖原磷酸化酶从糖原的非还原端开始,分解一个葡萄糖基,生成 G1P。糖原磷酸化酶只作用于 α-1,4-糖苷键而不是 α-1,6-糖苷键,因此糖原磷酸化酶只能裂解糖原的直链。最后,糖链分解至分支点约 4 个葡萄糖基时,由于空间受阻,糖原磷酸化酶失去功能,最后由葡聚糖转移酶和 α-1,6-糖苷酶分解,这两种酶合称脱支酶。糖原在生理情况下主要用于维持血糖稳定和能量供应,其合成和裂解主要受胰岛素和胰高血糖素的调控,主要通过调节糖原合酶和糖原磷酸化酶的活性实现[2]

  • 糖原代谢最为重要的意义在于当机体内葡萄糖匮乏时,能快速分解供能,以保护重要器官发生不可逆的损伤,而脂肪动员供能较慢。在机体内,糖原主要以肝糖原和肌糖原的形式分别在肝和肌肉组织中储存。肝糖原主要用于血糖的稳定,这对依赖葡萄糖功能的组织和细胞尤为重要,比如脑组织和红细胞,肌糖原主要为肌肉收缩提供急需的能量。糖原颗粒最高可以由55 000个葡萄糖残基组成。在骨骼肌中,糖原颗粒的粒径为 10~44 nm,而在肝中,粒径为 110~290 nm。此外,在大脑、心、肾、脂肪组织和红细胞中均发现糖原,但其发挥何种功能仍不十分清楚[7]。因此,厘清糖原代谢的动态特征及功能调控模式,对于相关代谢疾病过程中的机制研究具有重要意义。

  • 1 糖原代谢与代谢性疾病

  • 代谢性疾病是由于机体代谢异常引起的一系列疾病,主要包括 2 型糖尿病、非酒精性脂肪性肝病、肥胖症、高脂血症和高血压[8-11]。这些疾病通常同时存在,具有共同的危险因素,并且与肿瘤、心血管疾病和过早死亡的风险增加相关。近年来,糖原代谢在代谢性疾病中的作用越来越受到重视,特别是在糖尿病、非酒精性脂肪性肝病和肥胖症的发病机制中发挥着关键作用[12-17]

  • 在糖尿病领域,糖原代谢对于维持血糖稳定至关重要。血糖水平升高时,胰岛素分泌增加,促进肝和肌肉等组织进行糖原合成,降低血糖;血糖下降时,如饥饿或体力活动后,肝通过糖原分解释放葡萄糖,保持血糖稳定。在高脂肪饮食诱导的糖尿病小鼠中,褪黑激素通过PKCζ-Akt-GSK3β通路刺激肝糖原合成,改善糖尿病小鼠的葡萄糖耐受不良和胰岛素抵抗[18]。人类脂肪组织中糖原代谢基因的表达与BMI和胰岛素抵抗呈负相关关系,强调脂肪细胞糖原代谢在血糖维持中的重要性[19]。然而,糖原对于胰岛β细胞却存在相反的作用,2型糖尿病患者的胰岛β细胞释放胰岛素能力减弱,导致血糖持续升高,形成“糖毒性”。该研究表明,高血糖状态不仅增加了底物可用性,还增强糖原合成相关基因如PTG表达,促进糖原形成。然而,过多的糖原累积可能导致胰岛β细胞功能障碍甚至死亡,进一步加重糖尿病的发展。

  • 在非酒精性脂肪性肝病方面,糖原代谢在肝中尤为关键,尤其是在调节肝中过量葡萄糖的储存方面。本课题组研究表明,肝细胞倾向于通过糖原生成而非脂肪生成储存葡萄糖。UDPG作为糖原合成的中间代谢产物,能够运输至肝细胞高尔基体,并与位点 1 蛋白酶 (Site1 Protease,S1P) 结合,抑制S1P介导的固醇调节元件结合蛋白的切割,从而抑制脂肪的从头合成。表明,UDPG介导的脂肪生成调节可能为人类异常脂质代谢的管理提供新的治疗途径[20]

  • 在肥胖研究领域,糖原的动态变化被认为是脂肪组织中葡萄糖和脂质代谢协调的能量感应方式。解偶联蛋白 1 (Uncoupling Protein 1,UCP1) 是一种在棕色和米色脂肪细胞中表达的蛋白质,通过解偶联线粒体膜上的质子梯度与ATP产生促进热量产生。糖原代谢的调节对于 UCP1 的表达至关重要,通过产生活性氧 (Reactive Oxygen Species,ROS) 激活 p38 MAPK,后者是 UCP1 表达的上游信号。在肥胖小鼠模型中,激活脂肪细胞的糖原代谢可使体重减少,表明调节糖原代谢可能有助于改善肥胖和相关的代谢紊乱[19]。此外,肌肉糖原水平的降低可能会通过激活如 AMPK通路等增加脂肪氧化,促进脂肪氧化相关基因的表达[21]。糖原代谢在代谢性疾病中的新进展揭示了其在糖尿病、非酒精性脂肪性肝病和肥胖症中的潜在治疗价值,为未来的研究和治疗提供了新的方向,但由于其在不同时期对于不同组织存在不同影响,使得糖原对于代谢性疾病的调控仍存在严峻挑战。

  • 2 糖原代谢与肿瘤

  • 除了调控代谢性疾病的进展,糖原代谢对肿瘤发生发展的影响在近些年也被广泛关注。研究发现,肿瘤细胞能够储存大量糖原,通过调节能量代谢、干性分化、氧化还原状态、介导化疗耐药和信号调节等方面促进肿瘤的发展[22]。肿瘤细胞通过高表达糖原代谢关键酶 UDP-葡萄糖焦磷酸化酶 2、糖原合成酶 1 (Glycogen Synthase1,GYS1) 以及糖原磷酸化酶,使得糖原在肿瘤细胞内快速合成与分解,用以维持细胞的增殖、侵袭和转移[12]。在乏氧条件下,肿瘤细胞氧化磷酸化水平下降,其更多将摄取的葡萄糖合成为糖原储存,以维持细胞干性,并进入休眠状态。非乏氧状态下,肿瘤微环境中肿瘤相关成纤维细胞通过分泌IL-6和CXCL10/CCL5,促进肿瘤细胞的糖原分解,其产生的G6P流向糖酵解,为肿瘤细胞增殖、侵袭和转移提供能量[23]。基于生物力学原理的三维纤维蛋白软凝胶筛选并扩增的肿瘤再生细胞 (Tumor-Repopulating Cells, TRCs)具有干性、耐药及更强的成瘤能力,研究发现,其利用糖异生途径进行糖原生成,并通过糖原合成-糖原分解-磷酸戊糖途径使细胞内ROS维持在适度水平以促进乏氧TRCs恶性增殖[24]。因此,糖原代谢作为糖代谢的补充,为肿瘤细胞干性、休眠以及激活后的侵袭转移提供更多的能量选择。此外,研究发现,化疗药物处理后的肿瘤细胞产生的ROS 可通过促进芳香烃受体(Aryl hydrocarbon Receptor, AhR) 半胱氨酸亚磺酰化,使其与热休克蛋白 90 (Heat Shock Protein 90,HSP90)解离,并与糖原复合体中 PPP1R3 (Protein Phosphatase1 Regulatory Subunit 3) 家族蛋白PPP1R3C (Protein Phosphatase1 Regulatory Subunit 3C) 结合,抑制糖原磷酸化酶 L去磷酸化,进而促进糖原分解。糖原分解来源的G6P流向磷酸戊糖途径,产生还原型烟酰胺腺嘌呤二核苷酸磷酸 (Reduced Nicotinamide Adenine Dinucleotide Phosphate,NADPH)清除P450单加氧酶代谢化疗药物产生的ROS,从而使得肿瘤细胞逃避氧化应激致死性攻击,诱发肿瘤患者的耐药[25]。糖原除了营养能量储存和提供还原力清除ROS的功能外,过多糖原累积还会发生液-液相分离[26]。研究发现,累积的糖原相分离造成重要抑癌Hippo信号通路失活,激活下游原癌蛋白YAP,从而驱动早期肝癌的起始[26]。糖原代谢在肿瘤发生发展中的多方面作用,提供了潜在的治疗靶点,有望为抗肿瘤治疗带来新的突破。

  • 3 糖原代谢与免疫调节

  • 尽管糖原主要在肝细胞和骨骼肌细胞中被发现,而近年的研究发现,多种免疫细胞中也存在糖原储存,糖原代谢在不同免疫细胞类型中的作用及其调控机制逐渐被揭示[27]。本课题组研究发现,糖原代谢对 CD8+ 记忆 T 细胞的形成及长期存活至关重要[27]。CD8+ 记忆T细胞高表达磷酸烯醇丙酮酸羧激酶,驱动糖异生途径进而增加糖原生物合成。糖原随后通过糖原分解过程生成G6P,后者进入磷酸戊糖途径生成还原性 NADPH,降低记忆 T 细胞内 ROS水平维持其长期存活[28]。此外,CD8+ 记忆T细胞内储存的糖原也为其在遭受病原菌二次刺激时的快速应答反应提供早期能量供应。二次应答时T细胞抗原受体 (T Cell Receptor,TCR) 信号的活化直接通过 LCK/ZAP70 磷酸化激活脑型糖原磷酸化酶 (Glycogen Phosphorylase,Brain,PYGB),后者驱动糖原的快速分解供能[29]。此外,中性粒细胞也被发现利用糖异生代谢途径存储糖原[30]。糖原的合成和分解有利于中性粒细胞维持氧化还原稳态平衡,促进自身存活和效应功能。慢性阻塞性肺疾病患者中,糖原代谢途径的缺失显著抑制中性粒细胞效应功能[30]。黏膜相关不变 T (Mucosal-Associated Invariant T,MAIT) 细胞是一类具有快速效应功能的先天T细胞,在宿主抵抗病原体过程中发挥重要作用。MAIT细胞被发现其细胞内源储存的糖原可显著增强细胞毒性。MAIT细胞表达糖原合成酶和 PYGB。MAIT 活化后的糖原分解代谢与记忆性 T 细胞相似,PYGB活性增强驱动糖原快速分解为其效应反应供能。抑制糖原分解显著降低MAIT细胞的脱颗粒和细胞毒性,证实了糖原代谢在MAIT快速效应功能中的重要性[31]。树突状细胞 (Dendritic Cell,DC) 是机体最主要的抗原呈递细胞,在启动和调节免疫应答反应过程中发挥核心作用。研究表明,DC 内存储大量糖原,在其活化早期糖原代谢途径被迅速启动,抑制细胞内糖原分解,就会抑制 TLR 介导的 DC 完全活化和其启动 T 细胞活化的能力[32]。此外,在盲肠结扎和穿刺诱导的脓毒症小鼠模型中证实,糖原代谢在调控巨噬细胞的炎症表型分化过程中发挥重要作用[33]。糖原贮积病 1b 型 (Glycogen Storage Disease type1b,GSD-1b) 是一种由葡萄糖-6-磷酸转运体 (Glucose-6-Phosphate Translocase,G6PT) 基因突变引起的常染色体隐性遗传病,其特征是糖原和葡萄糖稳态的异常。研究发现,G6PT 突变患者出现淋巴细胞减少症、T 细胞在 TCR 刺激下的糖酵解能力降低、外周调节性 T 细胞的抑制功能降低等现象,提示 GSD-1b 患者自身免疫风险增加与免疫细胞的糖原代谢异常相关[34]。糖原代谢在多种免疫细胞中至关重要,影响其存活、功能和应答反应,糖原代谢异常与免疫功能失调相关,这些发现为了解免疫细胞代谢调控及相关疾病提供了新视角。

  • 4 糖原代谢新型调控模式和机制

  • 糖原的合成和分解过程受到复杂的机制调控,以适应身体的能量需求和维持血糖水平的稳定。糖原合成主要在肝和肌肉中进行,磷酸葡萄糖变位酶 1 (Phosphoglucomutase1,PGM1) 将 G6P 转化为G1P,随后由尿苷二磷酸葡萄糖焦磷酸提供葡萄糖残基,GYS1 将其添加到糖原链上[3]。糖原分解过程由糖原磷酸化酶和糖原脱支酶等酶催化。糖原磷酸化酶将糖原分解为G1P,然后通过PGM1转化为 G6P,参与糖酵解过程[35-36]。糖原代谢的调控涉及多个层面,包括基因表达、酶活性调节、激素调控等。糖原代谢酶活性通过磷酸化/去磷酸化和变构调节等机制调控。经典的研究认为,糖原合成酶在胰岛素的作用下被激活,而糖原磷酸化酶则在胰高血糖素的作用下被激活[37-38]。近年来,研究者发现多种新的糖原代谢调控模式和机制。在药物治疗的肿瘤细胞中,ROS通过半胱氨酸亚磺酰化作用激活芳香烃受体 (Ary hybrocarbon Receptor,AhR),使 AhR 能够从 HSP90 复合体中解离,并与糖原磷酸化酶复合体的 PPP1R3 家族成员 PPP1R3C 结合。这种结合激活糖原磷酸化酶,启动糖原分解过程和磷酸戊糖途径,产生NADPH清除ROS以及形成耐药性[25]。Zhang 等[39] 的研究发现,在肝特异性条件性敲除Mettl3基因的小鼠模型中,m6A修饰缺失会导致肝糖原储存受损。进一步机制研究揭示,糖原合酶 Gys2 mRNA 是甲基转移酶 METTL3 底物, m6A修饰在肝糖原合成中扮演着关键角色。此外, IGF2BP2 作为识别 m6A 修饰的“阅读器”蛋白,能够稳定 Gys2 mRNA 并促进其表达[39]。因此, RNA 表观遗传学的关键调控分子 METTL3 和 IGF2BP2,分别作为“写入器”和“阅读器”,对于维持哺乳动物肝中的糖原合成具有至关重要的作用。这些发现为理解肝糖原代谢的调控机制提供新视角,并对治疗相关代谢性疾病具有重要意义。糖原代谢是维持机体能量平衡和血糖稳态的关键过程。随着研究的深入,新的调控模式和机制不断被发现,为理解糖原代谢的复杂性提供了新视角。

  • 5 总结与展望

  • 在过去的十年里,糖原代谢已经成为代谢研究中的一个热门领域。从传统观点看,糖原的功能似乎很清楚,肌肉糖原为能量需求产生ATP,肝糖原为其他组织释放葡萄糖。然而,糖原的意义可能远不止储存和供应能量。糖原代谢在生理和疾病发生发展中都扮演着重要角色,其调控机制涉及多种因素。在代谢性疾病方面,糖原合成与分解直接影响血糖水平的稳定,而过多的糖原积累可能导致糖尿病等代谢性疾病的发展。在肿瘤生长中,肿瘤细胞通过调节糖原的合成和分解以适应不同的能量代谢需求,而化疗药物也影响肿瘤细胞的耐药性。此外,免疫细胞功能也依赖于糖原代谢维持其活性和功能。值得注意的是,本课题组发现在长寿命细胞如记忆性T细胞中,活跃的糖原代谢有利于减少细胞内 ROS 的累积,维持细胞氧化还原稳态,有利于其长期的存活,提示糖原代谢可能是处于静息状态长寿命细胞如干细胞等的共同代谢特征。尽管糖原代谢调控在疾病中的作用研究取得了重要进展,但仍有许多问题亟待解决。例如,糖原代谢调控的具体分子机制尚未完全阐明,相关药物的开发也需要进一步探索。未来的研究应重点关注糖原代谢的精细调控机制以及新的治疗靶点,以期为糖原代谢相关疾病提供更有效的治疗方案。总之,糖原代谢调控在多种疾病中的作用已经得到广泛认可,随着研究的深入,这一领域有望为疾病的预防和治疗提供新的思路和方法。

  • 参考文献

    • [1] LITWACK G.Glycogen and glycogenolysis[M].Human Biochemistry,2018,161-181.

    • [2] ROACH P J,DEPAOLI-ROACH A A,HURLEY T D,et al.Glycogen and its metabolism:Some new developments and old themes[J].Biochem J,2012,441(3):763-787.

    • [3] ADEVA-ANDANY M M,GONZÁLEZ-LUCÁN M,DONAPETRY-GARCÍA C,et al.Glycogen metabolism in humans[J].BBA Clin,2016,5:85-100.

    • [4] CHIKWANA V M,KHANNA M,BASKARAN S,et al.Structural basis for 2'-phosphate incorporation into glycogen by glycogen synthase[J].Proc Natl Acad Sci USA,2013,110(52):20976-20981.

    • [5] VILLAR-PALASI C,LARNER J.Glycogen metabolism and glycolytic enzymes[J].Annu Rev Biochem,1970,39:639-672.

    • [6] KANUNGO S,WELLS K,TRIBETT T,et al.Glycogen metabolism and glycogen storage disorders[J].Ann Transl Med,2018,6(24):474.

    • [7] LIU X,GILBERT R G.Normal and abnormal glycogen structure:A review[J].Carbohydr Polym,2024,338:122195.

    • [8] DUSEJA A,SINGH S P,SARASWAT V A,et al.Nonalcoholic fatty liver disease and metabolic syndromeposition paper of the Indian national association for the study of the liver,endocrine society of India,Indian college of cardiology and Indian society of gastroenterology[J].J Clin Exp Hepatol,2015,5(1):51-68.

    • [9] GRUNDY S M,CLEEMAN J I,DANIELS S R,et al.Diagnosis and management of the metabolic syndrome:An American Heart Association/National Heart,Lung,and Blood Institute Scientific Statement[J].Circulation,2005,112(17):2735-2752.

    • [10] NG C H,WONG Z Y,CHEW N W S,et al.Hypertension is prevalent in non-alcoholic fatty liver disease and increases all-cause and cardiovascular mortality[J].Front Cardiovasc Med,2022,9:942753.

    • [11] Third report of the National Cholesterol Education Program(NCEP)expert panel on detection,evaluation,and treatment of high blood cholesterol in adults(Adult Treatment Panel Ⅲ)final report[R].Circulation,2002,6(25):3143-3421.

    • [12] GOLABI P,PAIK J M,ALQAHTANI S,et al.Burden of nonalcoholic fatty liver disease in Asia,the Middle East and North Africa:Data from Global Burden of Disease 2009-2019[J].J Hepatol,2021,75(4):795-809.

    • [13] GBD 2019 DIABETES MORTALITY COLLABORA‐TORS.Diabetes mortality and trends before 25 years of age:An analysis of the global burden of disease study 2019[J].Lancet Diabetes Endocrinol,2022,10(3):177-192.

    • [14] TOH J Z K,PAN X H,TAY P W L,et al.A meta-analysis on the global prevalence,risk factors and screening of coronary heart disease in nonalcoholic fatty liver disease [J].Clin Gastroenterol Hepatol,2022,20(11):2462-2473.

    • [15] CHEW N W,FIGTREE G A,KONG G,et al.Hepatic steatosis and advanced fibrosis are independent predictors of mortality in acute myocardial infarction without standard modifiable risk factors[J].Diabetes Obes Metab,2022,24(12):2454-2458.

    • [16] TAY P W L,NG C H,LIN S Y,et al.Placebo adverse events in non-alcoholic steatohepatitis clinical trials:A pooled analysis of 2 944 participants[J].Am J Gastroenterol,2023,118(4):645-653.

    • [17] KONG G,CHIN Y H,CHONG B,et al.Higher mortality in acute coronary syndrome patients without standard modifiable risk factors:Results from a global metaanalysis of 1 285 722 patients[J].Int J Cardiol,2023,371:432-440.

    • [18] SHIEH J M,WU H T,CHENG K C,et al.Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells[J].J Pineal Res,2009,47(4):339-344.

    • [19] KEINAN O,VALENTINE J M,XIAO H,et al.Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes[J].Nature,2021,599(7884):296-301.

    • [20] CHEN J,ZHOU Y,LIU Z,et al.Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG[J].Science,2024,383(6684):eadi3332.

    • [21] IWAYAMA K,SEOL J,TOKUYAMA K.Exercise timing matters for glycogen metabolism and accumulated fat oxidation over 24 h[J].Nutrients,2023,15(5):1109.

    • [22] ZOIS C E,HARRIS A L.Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy[J].J Mol Med(Berl),2016,94(2):137-154.

    • [23] DAUER P,LENGYEL E.New roles for glycogen in tumor progression[J].Trends Cancer,2019,5(7):396-399.

    • [24] TANG K,ZHU L,CHEN J,et al.Hypoxia promotes breast cancer cell growth by activating a glycogen metabolic program[J].Cancer Res,2021,81(19):4949-4963.

    • [25] ZHOU N,CHEN J,LING Z,et al.Aryl hydrocarbon receptor sulfenylation promotes glycogenolysis and rescues cancer chemoresistance[J].J Clin Invest,2023,133(24).

    • [26] LIU Q,LI J,ZHANG W,et al.Glycogen accumulation and phase separation drives liver tumor initiation[J].Cell,2021,184(22):5559-5576.e19.

    • [27] ZHANG H,MA J,TANG K,et al.Beyond energy storage:Roles of glycogen metabolism in health and disease[J].FEBS J,2021,288(12):3772-3783.

    • [28] MA R,JI T,ZHANG H,et al.A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells[J].Nat Cell Biol,2018,20(1):21-27.

    • [29] ZHANG H,LIU J,YANG Z,et al.TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory T cells[J].Mol Cell,2022,82(16):3077-3088.e6.

    • [30] SADIKU P,WILLSON J A,RYAN E M,et al.Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis[J].Cell Metab,2021,33(2):411-423.e4.

    • [31] CASSIDY F C,KEDIA-MEHTA N,BERGIN R,et al.Glycogen-fuelled metabolism supports rapid mucosalassociated invariant T cell responses[J].Proc Natl Acad Sci U S A,2023,120(25):e2300566120.

    • [32] THWE P M,PELGROM L R,COOPER R,et al.CellIntrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses[J].Cell Metab,2017,26(3):558-567.e5.

    • [33] MA J,WEI K,LIU J,et al.Glycogen metabolism regulates macrophage-mediated acute inflammatory responses [J].Nat Commun,2020,11(1):1769.

    • [34] MELIS D,CARBONE F,MINOPOLI G,et al.Cutting edge:Increased autoimmunity risk in glycogen storage disease type 1b is associated with a reduced engagement of glycolysis in T Cells and an impaired regulatory T cell function[J].J Immunol,2017,198(10):3803-3808.

    • [35] GONZALEZ J T,FUCHS C J,BETTS J A,et al.Liver glycogen metabolism during and after prolonged endurancetype exercise[J].Am J Physiol Endocrinol Metab,2016,311(3):E543-553.

    • [36] BOUSKILA M,HUNTER R W,IBRAHIM A F,et al.Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle[J].Cell Metab,2010,12(5):456-466.

    • [37] NAGINI S,SOPHIA J,MISHRA R.Glycogen synthase kinases:Moonlighting proteins with theranostic potential in cancer[J].Semin Cancer Biol,2019,56:25-36.

    • [38] CAPOZZI M E,D'ALESSIO D A,CAMPBELL J E.The past,present,and future physiology and pharmacology of glucagon[J].Cell Metab,2022,34(11):1654-1674.

    • [39] ZHANG X,YIN H,ZHANG X,et al.N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA[J].Nat Commun,2022,13(1):7038.

  • 参考文献

    • [1] LITWACK G.Glycogen and glycogenolysis[M].Human Biochemistry,2018,161-181.

    • [2] ROACH P J,DEPAOLI-ROACH A A,HURLEY T D,et al.Glycogen and its metabolism:Some new developments and old themes[J].Biochem J,2012,441(3):763-787.

    • [3] ADEVA-ANDANY M M,GONZÁLEZ-LUCÁN M,DONAPETRY-GARCÍA C,et al.Glycogen metabolism in humans[J].BBA Clin,2016,5:85-100.

    • [4] CHIKWANA V M,KHANNA M,BASKARAN S,et al.Structural basis for 2'-phosphate incorporation into glycogen by glycogen synthase[J].Proc Natl Acad Sci USA,2013,110(52):20976-20981.

    • [5] VILLAR-PALASI C,LARNER J.Glycogen metabolism and glycolytic enzymes[J].Annu Rev Biochem,1970,39:639-672.

    • [6] KANUNGO S,WELLS K,TRIBETT T,et al.Glycogen metabolism and glycogen storage disorders[J].Ann Transl Med,2018,6(24):474.

    • [7] LIU X,GILBERT R G.Normal and abnormal glycogen structure:A review[J].Carbohydr Polym,2024,338:122195.

    • [8] DUSEJA A,SINGH S P,SARASWAT V A,et al.Nonalcoholic fatty liver disease and metabolic syndromeposition paper of the Indian national association for the study of the liver,endocrine society of India,Indian college of cardiology and Indian society of gastroenterology[J].J Clin Exp Hepatol,2015,5(1):51-68.

    • [9] GRUNDY S M,CLEEMAN J I,DANIELS S R,et al.Diagnosis and management of the metabolic syndrome:An American Heart Association/National Heart,Lung,and Blood Institute Scientific Statement[J].Circulation,2005,112(17):2735-2752.

    • [10] NG C H,WONG Z Y,CHEW N W S,et al.Hypertension is prevalent in non-alcoholic fatty liver disease and increases all-cause and cardiovascular mortality[J].Front Cardiovasc Med,2022,9:942753.

    • [11] Third report of the National Cholesterol Education Program(NCEP)expert panel on detection,evaluation,and treatment of high blood cholesterol in adults(Adult Treatment Panel Ⅲ)final report[R].Circulation,2002,6(25):3143-3421.

    • [12] GOLABI P,PAIK J M,ALQAHTANI S,et al.Burden of nonalcoholic fatty liver disease in Asia,the Middle East and North Africa:Data from Global Burden of Disease 2009-2019[J].J Hepatol,2021,75(4):795-809.

    • [13] GBD 2019 DIABETES MORTALITY COLLABORA‐TORS.Diabetes mortality and trends before 25 years of age:An analysis of the global burden of disease study 2019[J].Lancet Diabetes Endocrinol,2022,10(3):177-192.

    • [14] TOH J Z K,PAN X H,TAY P W L,et al.A meta-analysis on the global prevalence,risk factors and screening of coronary heart disease in nonalcoholic fatty liver disease [J].Clin Gastroenterol Hepatol,2022,20(11):2462-2473.

    • [15] CHEW N W,FIGTREE G A,KONG G,et al.Hepatic steatosis and advanced fibrosis are independent predictors of mortality in acute myocardial infarction without standard modifiable risk factors[J].Diabetes Obes Metab,2022,24(12):2454-2458.

    • [16] TAY P W L,NG C H,LIN S Y,et al.Placebo adverse events in non-alcoholic steatohepatitis clinical trials:A pooled analysis of 2 944 participants[J].Am J Gastroenterol,2023,118(4):645-653.

    • [17] KONG G,CHIN Y H,CHONG B,et al.Higher mortality in acute coronary syndrome patients without standard modifiable risk factors:Results from a global metaanalysis of 1 285 722 patients[J].Int J Cardiol,2023,371:432-440.

    • [18] SHIEH J M,WU H T,CHENG K C,et al.Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells[J].J Pineal Res,2009,47(4):339-344.

    • [19] KEINAN O,VALENTINE J M,XIAO H,et al.Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes[J].Nature,2021,599(7884):296-301.

    • [20] CHEN J,ZHOU Y,LIU Z,et al.Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG[J].Science,2024,383(6684):eadi3332.

    • [21] IWAYAMA K,SEOL J,TOKUYAMA K.Exercise timing matters for glycogen metabolism and accumulated fat oxidation over 24 h[J].Nutrients,2023,15(5):1109.

    • [22] ZOIS C E,HARRIS A L.Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy[J].J Mol Med(Berl),2016,94(2):137-154.

    • [23] DAUER P,LENGYEL E.New roles for glycogen in tumor progression[J].Trends Cancer,2019,5(7):396-399.

    • [24] TANG K,ZHU L,CHEN J,et al.Hypoxia promotes breast cancer cell growth by activating a glycogen metabolic program[J].Cancer Res,2021,81(19):4949-4963.

    • [25] ZHOU N,CHEN J,LING Z,et al.Aryl hydrocarbon receptor sulfenylation promotes glycogenolysis and rescues cancer chemoresistance[J].J Clin Invest,2023,133(24).

    • [26] LIU Q,LI J,ZHANG W,et al.Glycogen accumulation and phase separation drives liver tumor initiation[J].Cell,2021,184(22):5559-5576.e19.

    • [27] ZHANG H,MA J,TANG K,et al.Beyond energy storage:Roles of glycogen metabolism in health and disease[J].FEBS J,2021,288(12):3772-3783.

    • [28] MA R,JI T,ZHANG H,et al.A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells[J].Nat Cell Biol,2018,20(1):21-27.

    • [29] ZHANG H,LIU J,YANG Z,et al.TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory T cells[J].Mol Cell,2022,82(16):3077-3088.e6.

    • [30] SADIKU P,WILLSON J A,RYAN E M,et al.Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis[J].Cell Metab,2021,33(2):411-423.e4.

    • [31] CASSIDY F C,KEDIA-MEHTA N,BERGIN R,et al.Glycogen-fuelled metabolism supports rapid mucosalassociated invariant T cell responses[J].Proc Natl Acad Sci U S A,2023,120(25):e2300566120.

    • [32] THWE P M,PELGROM L R,COOPER R,et al.CellIntrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses[J].Cell Metab,2017,26(3):558-567.e5.

    • [33] MA J,WEI K,LIU J,et al.Glycogen metabolism regulates macrophage-mediated acute inflammatory responses [J].Nat Commun,2020,11(1):1769.

    • [34] MELIS D,CARBONE F,MINOPOLI G,et al.Cutting edge:Increased autoimmunity risk in glycogen storage disease type 1b is associated with a reduced engagement of glycolysis in T Cells and an impaired regulatory T cell function[J].J Immunol,2017,198(10):3803-3808.

    • [35] GONZALEZ J T,FUCHS C J,BETTS J A,et al.Liver glycogen metabolism during and after prolonged endurancetype exercise[J].Am J Physiol Endocrinol Metab,2016,311(3):E543-553.

    • [36] BOUSKILA M,HUNTER R W,IBRAHIM A F,et al.Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle[J].Cell Metab,2010,12(5):456-466.

    • [37] NAGINI S,SOPHIA J,MISHRA R.Glycogen synthase kinases:Moonlighting proteins with theranostic potential in cancer[J].Semin Cancer Biol,2019,56:25-36.

    • [38] CAPOZZI M E,D'ALESSIO D A,CAMPBELL J E.The past,present,and future physiology and pharmacology of glucagon[J].Cell Metab,2022,34(11):1654-1674.

    • [39] ZHANG X,YIN H,ZHANG X,et al.N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA[J].Nat Commun,2022,13(1):7038.

  • 关闭