-
三级淋巴结构;免疫治疗;肿瘤免疫微环境;生物标志物
-
三级淋巴结构 (Tertiary Lymphoid Structures, TLS) 是在非淋巴组织中产生的免疫细胞聚集体。这类结构通常出现在自身免疫性疾病、慢性感染的炎症组织甚至肿瘤组织[1-4]。作为一类异位淋巴样结构,TLS的主要组成包含 B 细胞、T 细胞以及起支持作用的树突状细胞以及巨噬细胞等[5]。成熟 TLS 还包含滤泡状树突细胞 (Follicular Dendritic Cells, FDCs) 和生发中心 (Germinal Centers,GCs),有利于免疫细胞的分化和抗原呈递,进而增强细胞免疫和体液免疫,促进肿瘤杀伤功能。
-
在肿瘤微环境中,TLS能够促进免疫细胞在肿瘤组织中浸润,形成与肿瘤患者的良好预后显著相关。接受免疫治疗的患者,肿瘤组织中TLS高密度分布往往与免疫治疗积极反应相关,提示TLS可能是预示肿瘤免疫治疗良好反应的关键生物标志物[6-9]。此外,最近的研究表明,TLS在临床免疫治疗中积极响应发挥作用,有望成为有价值的治疗靶点[10]。由此可见,TLS的形成机制及其在肿瘤免疫微环境中的作用可为开发新的治疗策略提供潜在靶点。本文着重讨论 TLS 的评估鉴定、结构与组成、形成因素,并阐明TLS作为潜在生物标志物在肿瘤免疫治疗中的作用及潜在临床运用价值,以期更好地理解不同肿瘤和患者之间免疫微环境的差异,从而实现更个性化的治疗策略。
-
1 TLS的评估与鉴别
-
研究表明,TLS内涉及的细胞类型众多,结构也较为复杂[3]。当前的研究热点是如何从组织中准确识别、检测并量化TLS。当前TLS的评估及鉴别方式主要包括 HE染色鉴别 TLS分布、免疫组织化学或荧光对TLS的免疫细胞定性和定量以及基因表达谱检测TLS相关趋化因子。
-
1.1 通过 HE 染色鉴别肿瘤异位淋巴组织聚集物 ——TLS
-
HE染色是一种常用的组织染色技术,根据细胞核、细胞质以及组织结构呈现的不同染色强度、颜色色调以及纹理,鉴别肿瘤组织中的各种细胞形态和结构,包括TLS。经多聚甲醛固定并石蜡包埋肿瘤组织后,在 HE染色的组织中,可以观察到密集的淋巴细胞聚集区域,其中包括 B 细胞、T 细胞。成熟的 TLS 具有类似次级淋巴器官 (Secondary Lymphoid Organs, SLO) 的结构,含有 FDC 和 GCs,并且 B 细胞位于 GCs,可观察到聚集此区域的淋巴母细胞,同时T细胞则分布在滤泡的外围区域。通过观察这些特征,研究者可以在显微镜下识别TLS的存在[11-12]。
-
1.2 通过免疫组织化学和多重荧光免疫组织化学技术对TLS定性和定量
-
通过抗体特异性标记,免疫组织化学对TLS中各类免疫细胞的目标蛋白进行选择性地标记,进而可以在显微镜下观察到特定细胞类型的分布和密度[12]。因此,免疫组织化学是研究肿瘤微环境中 TLS分布的一种强有力技术,能够揭示TLS内部的免疫细胞组成成分和空间分布位置。对于TLS的研究,通常关注的免疫细胞包括 T细胞、B细胞和树突状细胞等。例如,通过 CD20抗体进行标记,有助于揭示 TLS 中 B 细胞的分布,同时标记 CD21或 CD23 可以显示滤泡结构,以判断具有 GCs的成熟 TLS。使用 CD4 或 CD8 抗体标记 TLS 中的 T 细胞,加以转录因子标记有助于评估各类T细胞亚群的浸润,如辅助 Th1 (转录因子 T-bet)、调节性 T 细胞 (转录因子 FOXP3) 和滤泡辅助 T 细胞 (转录因子 BCL6)。免疫组织化学不仅可以显示TLS在肿瘤组织中的分布位置,还可以利用数字病理软件对组织化学图像的TLS定量分析,计算特定标记的免疫细胞在 TLS 中的浸润或在整个肿瘤切片中的分布比例。这种定量分析有利于深入理解TLS在肿瘤组织中的分布密度以及其内部的免疫细胞组成和结构[13]。
-
多重荧光免疫组织化学技术 (multiplex Immunohistochemical,mIHC) 是一种使用辣根过氧化酶 (Horseradish Peroxidase,HRP) 对靶蛋白精准标记的酶学检测方法。该方法基于酪胺信号放大,采用多重顺序免疫染色技术,在单个肿瘤组织切片上对 TLS内部的多种免疫细胞精确标记,从而清晰地展现TLS内免疫细胞组成。这种技术能够鉴别肿瘤组织中的不同免疫细胞类型,为不同TLS亚型和成熟度提供识别依据,并利用数字病理软件分析工具对 TLS的密度、分布、免疫细胞组成等进行量化评估。因此,其在肿瘤相关 TLS 的研究中得到广泛的应用[6,12-13],mIHC 有助于深化理解肿瘤免疫环境 TLS 组成、功能等,有利于推进精准免疫治疗的发展。
-
1.3 基因表达谱检测TLS相关趋化因子
-
基因表达谱检测是分析细胞或组织中成千上万个基因表达情况的技术。基因表达谱分析可以量化与肿瘤微环境TLS形成和功能相关的趋化因子和其他免疫调节因子的表达 (见表1)。12种趋化因子基因特征主要涉及 CCL5、 CCL19、 CXCL10 和 CXCL13等,这些基因与炎症相关,并可预测结肠直肠癌[13]、黑色素瘤[14] 和乳腺癌[15] 等恶性肿瘤患者的良好预后。在结直肠癌中,CXCL13的表达有助于识别TLS分布[13]。对于胃癌组织,Tfh细胞特征基因以及与Th1细胞和B细胞相关特征基因均有助于预测 TLS 的存在[16-17]。在卵巢癌中,TNFRSF17 基因表达与浆细胞浸润相关,也显示TLS分布[18]。王红阳院士团队[19] 通过肝癌组织的空间转录,确定50 个特异性高表达的基因作为一种新的TLS鉴定基因集,其高分值与患者TLS高密度分布及良好预后紧密相关。
-
2 TLS的结构与组成
-
TLS主要涵盖B细胞、FDC、T细胞、成纤维网状细胞、基质细胞、树突细胞、巨噬细胞以及内皮细胞等多种免疫细胞与支持细胞 (见表2)。其中,滤泡状树突细胞通常聚集于B细胞区域的核心位置,通过表达多种受体,这些细胞能够有效地将抗原递呈给B细胞,进而激活B细胞分化并产生高效能抗体[22]。此外,内皮细胞则主要分布在TLS的边缘区域以及T细胞聚集的区域,它们与一些成纤维细胞共同作用,调控T细胞的功能;这些复杂的相互作用与细胞分布构成了TLS的根基,对于维持免疫反应和调节肿瘤微环境中的免疫活性至关重要[23]。
-
2.1 B细胞在TLS中扮演抗癌或抑癌的双面性角色
-
在针对抗肿瘤体液免疫的过程中,B细胞的激活、增殖以及分化过程至关重要。经过抗原呈递,成熟TLS 的naïve B细胞活化和扩增,并且历经抗体类别转换 (Class Switch Recombination,CSR) 和体细胞高频突变 (Somatic Hypermutation,SHM)的过程,诱导出具有高亲和力的B细胞[24]。CSR是 B细胞在其恒定区尾部Fc端发生突变,进而诱导抗体类别转变的生物过程。通过这一过程,B细胞从产生IgM抗体转变为生产IgG、IgA和IgE等其他类别抗体[18,25-26]。在肿瘤微环境里,TLS中B细胞遇到肿瘤相关抗原时,通过 SHM 和 CSR 的协同作用,分化成为记忆B细胞和浆细胞,后者针对肿瘤细胞表面的特定抗原,分泌高亲和力的IgG和IgA抗体,诱导ADCC效应,发挥抗肿瘤效应 (见图1) [11,27]。在肾细胞癌研究中,Meylan 等[28] 发现,相对 TLS 特征基因集评分低的肿瘤,TLS特征基因集高表达的肿瘤内,B 细胞的免疫球蛋白重链 (Heavy-Chain Immunoglobulin,IgH) 和免疫球蛋白轻链 (Light-Chain Immunoglobulin,IgL) 的克隆指数显著提高,尤其是IgH克隆数;表明TLS的B细胞选择性扩增,伴随着 SHM 和 CSR 过程,分化为浆细胞。由此可见,TLS可能是naïve B 细胞向记忆B细胞或浆细胞分化的关键场所,最终诱导体液免疫,产生针对肿瘤细胞的 IgG 和 IgA 抗体[28]。此外,研究报道了 HNSCC肿瘤中浸润分泌 IgA 和 IgG1的浆细胞,预示肿瘤患者良好的生存预后[29]。在卵巢癌小鼠模型中,TLS 中的 Tfh 细胞诱导 B 细胞的抗体类别转换,增强TLS的抗肿瘤效应。在皮肤黑色素瘤[30]、卵巢癌网膜转移瘤[31] 和胃食管腺癌[32] 等恶性肿瘤患者中,与外周B细胞相比,肿瘤组织TLS中 B细胞的免疫球蛋白基因重排更加显著,并且呈现出扩增现象[33-34]。在这些肿瘤组织微环境中 TLS 内的B细胞受抗原驱动而活化扩增,这是肿瘤免疫微环境TLS的抗肿瘤的重要特征。
-
然而,在肿瘤微环境中未成熟的TLS,其内部的 B细胞可能会分化为调节性 B细胞,分泌 TGF-β 等免疫抑制性细胞因子,重塑免疫微环境,从而诱导肿瘤免疫逃逸[35-37]。肿瘤相关 TLS 及其 B 细胞的分布和密度在不同的肿瘤类型中有很大差异。研究表明,前列腺癌组织中发现一群特殊的浆细胞,该亚群能够抑制CD8+ T细胞效应功能,促进前列腺癌进展[38]。在特定的肿瘤微环境中,B细胞的多克隆活化也可能塑造抑制性免疫微环境的形成,触发巨噬细胞极化,后者进而分泌免疫抑制性细胞因子,促进肿瘤免疫逃逸及肿瘤进展[39-41]。综上所述,肿瘤相关TLS的B细胞在塑造肿瘤微环境以及影响免疫治疗效果方面发挥不同的作用,进一步表明B细胞在肿瘤微环境中的作用是复杂且具有双面性的。
-
2.2 T细胞在TLS中发挥抗肿瘤免疫的重要作用
-
肿瘤微环境中免疫细胞发挥抗癌和促瘤的双重功能,其中 T 淋巴细胞是抗肿瘤免疫的主要执行者,因此局部微环境中T细胞的效应在免疫治疗中发挥至关重要的作用[35]。在TLS内,抗原呈递细胞 (如DC细胞) 将肿瘤特异性抗原呈递给T细胞,诱导T细胞的激活、增殖和分化,最终促进针对肿瘤细胞的细胞免疫应答;其中,CD8+ T 细胞能够直接识别并杀死表达肿瘤特异性抗原的肿瘤细胞,该过程涉及 TNF-α 和 Granzyme B 等释放,直接诱导肿瘤细胞死亡[42]。CD4+ T细胞通过分泌 IFN-γ细胞因子,后者能够辅助激活 CD8+ T 细胞 (见图1) [23,43]。此外,经过激活的 naïve T 细胞能够分化成记忆T细胞,为机体提供长期的免疫记忆[23]。
-
图1 肿瘤微环境中TLS的结构组成与功能
-
Figure1 Structural composition and function of TLS in the tumor microenvironment
-
研究表明,肺癌组织中TLS的绝大多数T细胞为效应记忆型,仅有少数为中央记忆型T细胞以及 naïve T细胞[44-46]。研究人员还观察到,在肿瘤微环境 TLS 内,CD8+ T 细胞表现出了显著的细胞毒性特征。肺癌、结直肠癌和胰腺癌等多种肿瘤患者的肿瘤组织中TLS分布密度与T细胞浸润呈正相关关系[47-49]。另外,在头颈部鳞状细胞癌中[50],Tfh细胞特征基因集与良好的预后相关联。此外,TLS还富含偏向 Th1 表型的 CD4+ T 细胞以及具有免疫调节功能的 Treg 细胞。这些发现揭示了 TLS 内一个复杂且动态的免疫细胞网络,其中细胞毒性 CD8+ T 细胞的浸润提示它们在对抗肿瘤过程中发挥关键作用[51]。同时,Th1偏向的CD4+ T细胞的存在进一步强化了这一免疫应答,通过促进免疫反应的效应机制对抗肿瘤。与此同时,2020年Cell出版的一篇关于结肠癌组织中细胞分布结构与抗肿瘤免疫反应的研究,揭示了TLS作为整体结构,其中T细胞能够与肿瘤边缘细胞直接作用发挥抗肿瘤效应[51];相反,在免疫细胞弥漫分布的患者中,浸润于肿瘤组织的巨噬细胞增加了Ki-67+ Treg细胞的富集,抑制 T细胞的免疫功能,证实TLS相较于弥漫分布的免疫细胞发挥着更重要的抗肿瘤作用[51]。综上所述,在肿瘤微环境中,TLS是类似于二级淋巴器官的结构,能够调控T细胞的增殖和分化,进而发挥抗肿瘤免疫应答。
-
2.3 TLS 内 FDC 细胞维持 B 细胞介导的体液免疫反应和免疫记忆
-
在肿瘤微环境中,肿瘤相关的成熟TLS与SLO 类似,其内部的 FDCs是调控体液免疫的关键细胞亚群。肿瘤微环境中 FDCs是一种特殊的树突状细胞,主要分布于TLS中B细胞区及GCs区域,在辅助B细胞的活化、分化和抗体产生方面发挥至关重要的作用[12]。在 TLS 中,FDCs 通过特异表面分子 CD21、CD23 和 CD35 与 B 细胞相互作用,促进 B 细胞的活化、增殖和分化[12]。FDCs 还能呈递抗原给 B 细胞,辅助 B 细胞识别肿瘤细胞特异性抗原,从而促进 B 细胞的类别转换和高频突变[11]。此外,在 TLS中 FDCs能够存储并呈递抗原,有助于诱导免疫记忆的形成。这意味着机体再次遇到相同抗原时快速激活B细胞,产生针对抗原的特异性抗体反应[52]。此外,在TLS中,FDCs提供的信号和细胞因子支持,促进B细胞分化为浆细胞,该浆细胞能够产生针对肿瘤抗原高亲和力的抗体,增强针对的肿瘤体液免疫反应 (见图1) [52]。在小细胞肾癌中, TLS 中 DC 的浸润增加与较低的复发和死亡风险密切相关[53]。在 TLS 中,DC 浸润密度与肿瘤浸润的耗竭性 T 细胞浸润呈负相关关系[53]。此外,FDCs 通过分泌细胞因子和趋化因子,募集 T细胞、B细胞和巨噬细胞等免疫细胞进入TLS中,有助于TLS 的结构和功能的维持,从而增强局部的免疫监视和免疫应答[54]。
-
2.4 高内皮小静脉 (High Endothelial Venule,HEV) ——淋巴细胞迁移到TLS内部的高速公路
-
在肿瘤微环境中,HEV 是 TLS 形成、成熟和功能发挥的关键结构,也是判断 TLS 结构的标志物[55]。HEV为免疫细胞提供一条快速通道,促使T 细胞、B细胞等免疫细胞能够快速进入肿瘤微环境的TLS内,进而与肿瘤细胞或其他免疫细胞通信交流,加强了免疫监视和抗肿瘤免疫应答 (见图1); 该过程可增强免疫细胞对肿瘤的识别和清除[12]。研究表明,HEV 在 TLS 中的存在与肿瘤内免疫细胞的浸润程度关联,尤其是 T细胞、B细胞和巨噬细胞等免疫细胞[55-56]。因此,HEV的生成预示着肿瘤患者的良好预后[57]。此外,研究表明,黑色素瘤、头颈部肿瘤和乳腺癌等多种恶性肿瘤组织的 HEV 形成还与TLS内部免疫细胞的活化和增殖相关。综上所述,通过招募和活化免疫细胞,HEV 有助于形成TLS,营造抗肿瘤免疫微环境,增强免疫系统对肿瘤细胞的监视和杀伤[58]。
-
2.5 其他组分细胞维持TLS的稳定
-
肿瘤相关 TLS 的成纤维网状细胞、基质细胞、树突细胞、巨噬细胞以及内皮细胞等多种免疫细胞在TLS的维持、支持、免疫应答等方面发挥不可或缺的作用。
-
3 TLS形成的驱动因素
-
TLS 的形成与 SLOs 的形成过程具有相似性,在局部肿瘤微环境中,T细胞或 B淋巴细胞以及基质细胞能够分泌趋化因子 CXCL13 以及细胞因子 IL-7 等,能够吸引淋巴组织诱导细胞 (Lymphoid Tissue inducer,LTi) 迁移到肿瘤组织,成为 TLS 形成的初始发生事件[59]。除此之外,在多种病理状态下,辅助性 T 细胞 17 (T helper cell17,Th17) 细胞[60-61]、B细胞[62] 或 M1极化的巨噬细胞[63] 也能够代替 LTi 细胞,启动局部肿瘤组织或炎症部位的 TLS形成,表明在不同的病理环境中,免疫细胞能够替代LTi细胞驱动TLS的形成。
-
淋巴毒素 (Lymphotoxin,LT),包括 LTα 和 LTβ 在内,是促进 TLS 形成的关键细胞因子,它们是肿瘤坏死因子 (Tumor Necrosis Factor,TNF) 超家族的成员之一。这些因子由 LTi以及淋巴细胞分泌,属于最早被发现的细胞因子[64-65]。LTα既可以形成可溶性三聚体分泌至细胞外发挥效应功能,也可以和LTβ结合形成LTα1β2异二聚体并在细胞膜上表达,从而介导多种炎症及抗病毒反应[20,66]。作为LTα1β2的受体LTβR,在上皮细胞、单核/巨噬细胞、B细胞、DC细胞及成纤维细胞等多种与淋巴组织形成密切相关的细胞上广泛表达,激活后可促进 VCAM1、 ICAM1、 CCL19、 CXCL13 和 CXCL12 等一系列可诱导免疫细胞聚集及淋巴组织稳态的黏附分子和趋化因子产生[67];随后,这些分子共同调节免疫细胞募集到淋巴生态位,以及调控HEV的血管形成,进而诱导TLS形成[68-70]。此外,LTβR信号通路的激活并趋化免疫细胞向淋巴生态位募集,在促进TLS的形成中发挥关键作用[71]。近期研究报道了 TLS 内活化的 B 淋巴细胞分泌 LTα,通过 LTαTNFR2 信号轴,激活 CD103+ CD8+ Trm 细胞 mTOR 信号通路,触发糖酵解,促进TLS形成的关键趋化因子 CXCL13分泌[72]。在非小细胞肺癌患者中,肿瘤浸润的 NKp44+ ILC3 通过表达淋巴毒素 LTα 和 LTβ等分子,促进瘤内TLS的形成并增强抗肿瘤免疫反应[73]。这些表明 LTα 和 LTβ 等分子是驱动 TLS 形成的关键分子。
-
4 TLS作为免疫治疗靶点
-
以 PD-1/PD-L1 单抗为代表的免疫检查点阻断治疗 (Immune Checkpoint Blockade,ICB) 是肿瘤治疗的重大突破,该方法在治疗大多数肿瘤患者时取得了一定的疗效。在大多数恶性肿瘤中,PD-1 单抗治疗有效的患者,往往存在大量免疫细胞浸润,而肿瘤局部免疫细胞的聚集与TLS的形成密切相关[12]。特别是在黑色素瘤、肾细胞癌、软组织肉瘤和尿路上皮癌患者中,通过肿瘤组织检测发现,那些肿瘤组织中TLS分布密度较高的患者,在接受 PD-1单抗或PD-1与CTLA-4单抗联合治疗时,免疫响应更为积极显著;在这些TLS内,CTL在PD-1单抗的作用下,能够阻断 PD-1 与 PD-L1 的结合,促进Granzyme B和IFN-γ等效应分子的分泌,从而有效地发挥抗肿瘤作用 (见图2),这些研究表明,肿瘤内 TLS 与 ICB 治疗积极应答密切相关[8-9,74-75]。此外,研究表明,TLS 在 NSCLC 等多种恶性肿瘤类型中高密度分布与临床患者良好预后呈正相关关系[76]。通过研究黑色素瘤中 CD20+ B细胞群集,发现 CD8+ T 细胞和 CD20+ B 细胞亚群的 TLS 基因集可以预测黑色素瘤的预后和对ICB的响应[8,77-78]。在乳腺癌和神经内分泌胰腺肿瘤的动物模型研究中,研究发现,联合使用抗血管生成和PD-L1单抗疗法可增加 HEV 的生成和 TLS 形成,从而提高抗肿瘤效应,进一步支持TLS作为提高免疫治疗反应的潜在靶点[79]。值得注意的是,TLS的分布密度与免疫细胞表面 PD-1 的表达密切相关,但与肿瘤细胞表面PD-L1的表达无明显关联。这提示,TLS功能可能与宿主的肿瘤微环境免疫状态相关,而与肿瘤细胞并无直接的关联,为理解肿瘤免疫逃逸和免疫治疗抵抗提供了新的视角[6,80-81]。综上所述,TLS能够作为提高免疫治疗效果的潜在靶点,为寻找提高肿瘤免疫治疗策略提供新思路。
-
图2 肿瘤相关TLS与肿瘤患者免疫治疗积极应答相关
-
Figure2 Tumor-associated TLS correlates with positive response to immunotherapy in patients
-
5 TLS作为临床应用研究的潜在生物标志物
-
大量的临床试验表明,免疫检查点抑制剂对晚期肿瘤患者的临床治疗效果有限;并且回顾性分析表明,肿瘤内 TLS 与患者预后改善相关[82-84]。 Italiano等[10] 开展的多队列Ⅱ期研究,针对晚期软组织肉瘤患者,探讨了帕博利珠单抗联合小剂量环磷酰胺的疗效。研究显示,基于TLS筛选的患者队列 6 个月无进展生存率 40%、客观缓解率 30%,显著高于总队列的 4.9% 和 2.4%[85]。实验进一步分析了免疫检查点抑制剂治疗在肉瘤患者中的疗效及其与肿瘤微环境的关系,鉴定了一种肉瘤亚型,其特征为B细胞相关基因表达增高,表现出“高免疫”状态,结合免疫组织化学结果显示,该肉瘤亚型中存在 TLS[85]。此外,对 SARC028 研究中 47 例患者的活检样本进行了回顾性分析,发现与B细胞相关的基因标志物能够高度预测患者对帕博利珠单抗的积极反应。这一发现确认了TLS可能作为一种有效的个体化免疫治疗生物标志物[10]。
-
两项独立临床研究报告了非小细胞肺癌病灶存在TLS与PD-1单抗新辅助治疗或化学治疗后与更长的无病生存期和总体生存密切相关[85]。此外,Ho 等[86] 在单组Ⅰb期研究(NCT03299946)中评估了卡博替尼和纳武利尤单抗在肝癌患者中的新辅助治疗可行性。此项临床研究涉及15例患者,结果表明12 例 (80%) 肝癌患者术后切缘为阴性,其中5/12的患者 (42%)表现出明显病理缓解。对患者样本的分析发现,在治疗有效的患者肿瘤组织中,存在大量由效应 T细胞、浆细胞以及 B细胞组成的 TLS,表明TLS的存在可以提高新辅助治疗为肝癌患者实行二次切除的可行性[86]。综上所述,TLS对肿瘤患者个体化免疫治疗的预测价值,进一步提示TLS可以作为预测临床免疫治疗效果的生物标志物。
-
6 TLS在肿瘤免疫治疗与临床运用中的挑战和未来方向
-
当前在TLS研究中面临的挑战主要包括TLS异质性、评价方法的标准化、TLS在不同肿瘤类型中的作用差异以及对TLS的形成和功能机制的理解。
-
6.1 TLS的异质性
-
TLS的异质性体现在多个方面,包括其在不同肿瘤类型中的存在以及同一肿瘤类型的不同患者之间的差异。这些差异主要体现在TLS的成熟度、分布位置、免疫细胞组成和免疫细胞的效应功能上。 TLS的成熟度可以在不同的肿瘤患者或同一患者的肿瘤不同发展阶段明显不同。此外,癌巢内TLS预示肿瘤患者良好预后,但相对于癌巢区域,大多数肿瘤相关 TLS 偏好分布在癌边缘和癌旁区域,因此,如何诱导癌巢内 TLS 形成是亟须解决的问题。 TLS由多种免疫细胞包括 B 细胞、T 细胞、树突状细胞、巨噬细胞和高内皮小静脉等组成。不同肿瘤类型或同一肿瘤类型的不同患者中TLS的具体细胞组成存在异质性。例如,一些TLS以B细胞为主要组分,并具有GCs结构,而有的TLS可能以T细胞或其他免疫细胞为主导,并不存在GCs。由于TLS 内的免疫细胞组成差异,不同肿瘤类型TLS的抗肿瘤功能也具有高度异质性。有些FDC和Tfh的成熟 TLS主要发挥免疫应答的作用,可以通过促进T细胞和 B 细胞的激活和增殖,增强对肿瘤的杀伤作用。而包含 Treg 和 TFR 细胞的 TLS 能够抑制 CTL 等免疫细胞的效应功能,从而抑制抗肿瘤作用。上述异质性影响TLS在肿瘤微环境的作用,为此,需要精准鉴别,并加以利用。
-
6.2 TLS定性和定量评估方法的标准化
-
标准化TLS定性和定量评估是一个重要且艰难的工作。当前的评估方法主要从组织病理学角度,采用免疫组织化学和多重免疫荧光技术鉴别TLS内部的免疫细胞类型组成和空间分布。这种评估方式在一定程度上有效且直观,但仍然存在以下几个主要问题:首先是主观性。组织病理学评估主要依靠病理学家的工作经验而做出相应的判断,导致在不同实验室和研究中心的专家对TLS的结果判断出现差异。其次,缺乏 TLS 标准化的评估标准。当前,评估 TLS 的方式在不同的研究中心缺乏统一的标准,其中包括TLS量化、TLS内免疫细胞的标记等问题。上述的两大缺点导致TLS研究结果的可比性和应用的限制,使TLS作为临床预测标志物的应用难以推行。在没有统一标准的情况下,不同评估结果无法比较,直接导致相应的研究成果难以转化为临床实践的指导。
-
为了解决这些问题,首先,需要设立评估TLS 的统一标准,其中包括免疫组织染色技术过程的标准化、TLS淋巴细胞的标记选择和阳性统计方法以及TLS的成熟度的鉴别标准。其二,采用人工智能分析数字化病理图像统一对TLS的分布密度、成熟度以及内部免疫细胞类型进行标准化评估,以减少病理专家的主观性,提高精确度和重复性,并且能够在全球推广运用,有利于研究成果的转化。最终,需要多中心、多队列验证和完善 TLS 评估标准,不同的人群和肿瘤类型中测试和验证评价TLS 有助于改善评估方法的普适性和可靠性。
-
6.3 不同肿瘤类型中TLS的功能存在异质性
-
大多数研究证实,肿瘤相关TLS的分布往往与肿瘤免疫治疗积极应答相关,但其在不同肿瘤类型中的作用呈现异质性。肿瘤微环境中的特异因子以及肿瘤细胞的特性可能导致某些肿瘤类型的TLS在发挥抗肿瘤作用,但在其他肿瘤类型中作用可能并不显著。其次,不同类型的TLS中免疫细胞的效应功能存在差异,对于微卫星不稳定或存在高突变负荷的肿瘤类型,该肿瘤组织的TLS内免疫细胞的效应功能更强,对免疫治疗响应更加积极。其三,不同肿瘤微环境中,TLS 的细胞组成往往相差甚远,抑制性肿瘤微环境的 TLS中浸润更多的 Treg细胞、 MDSC和肿瘤相关巨噬细胞,导致TLS的抗肿瘤功能受到抑制。因此,深入探究肿瘤类型、肿瘤微环境等,有助于提升TLS在不同肿瘤类型中的抗肿瘤功能,利用TLS治疗靶点,进而为优化针对特定肿瘤类型的免疫治疗策略提供参考思路。
-
综上所述,肿瘤相关TLS高密度分布能够预示多种恶性肿瘤患者的免疫治疗有良好的预后,并且可作为临床应用研究的潜在生物标志物。尽管TLS 的抗肿瘤作用受到密切关注,但如何精确评估TLS 的关键亚群组成、免疫细胞功能调控、以及驱动 TLS形成的调控机制仍然不完全清楚。为了解决这些问题,需要开发更为精确和标准化的评价方法,深入研究TLS的异质性及其在不同肿瘤类型中的作用机制,以及探索有效的方法调控TLS的形成和功能,从而发挥TLS在肿瘤治疗中的积极作用,有望为未来开发新的免疫治疗策略提供新思路。
-
参考文献
-
[1] MANZO A,BOMBARDIERI M,HUMBY F,et al.Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis:From inflammation to autoimmunity and tissue damage/remodeling[J].Immunol Rev,2010,233(1):267-285.
-
[2] THAUNAT O,PATEY N,CALIGIURI G,et al.Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis[J].J Immunol,2010,185(1):717-728.
-
[3] NEYT K,PERROS F,GEURTSVANKESSEL C H,et al.Tertiary lymphoid organs in infection and autoimmunity [J].Trends Immunol,2012,33(6):297-305.
-
[4] SAUTES-FRIDMAN C,LAWAND M,GIRALDO N A,et al.Tertiary lymphoid structures in cancers:Prognostic value,regulation,and manipulation for therapeutic intervention[J].Frontiers in Immunology,2016,7:407.
-
[5] VAN DE PAVERT S A,MEBIUS R E.New insights into the development of lymphoid tissues[J].Nature Reviews Immunology,2010,10(9):664-674.
-
[6] CABRITA R,LAUSS M,SANNA A,et al.Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J].Nature,2020,577(7791):561-565.
-
[7] FRIDMAN W H,MEYLAN M,PETITPREZ F,et al.B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome[J].Nat Rev Clin Oncol,2022,19(7):441-457.
-
[8] HELMINK B A,REDDY S M,GAO J,et al.B cells and tertiary lymphoid structures promote immunotherapy response[J].Nature,2020,577(7791):549-555.
-
[9] PETITPREZ F,DE REYNIES A,KEUNG E Z,et al.B cells are associated with survival and immunotherapy response in sarcoma[J].Nature,2020,577(7791):556-560.
-
[10] ITALIANO A,BESSEDE A,PULIDO M,et al.Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures:A phase 2 PEMBROSARC trial cohort [J].Nat Med,2022,28(6):1199-1206.
-
[11] YAEGER R,CHATILA W K,LIPSYC M D et al.Clinical sequencing defines the genomic landscape of metastatic colorectal cancer[J].Cancer Cell,2018,33:125-136.e3.
-
[12] SAUTES-FRIDMAN C,PETITPREZ F,CALDERARO J,et al.Tertiary lymphoid structures in the era of cancer immunotherapy[J].Nature Reviews Cancer,2019,19:307-325.
-
[13] COPPOLA D,NEBOZHYN M,KHALIL F,et al.Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling[J].Am J Pathol 2011,179:37-45.
-
[14] MESSINA J L,FENSTERMACHER D A,ESCHRICH S,et al.12-Chemokine gene signature identifies lymph node-like structures in melanoma:Potential for patient selection for immunotherapy?[J].Scientific Reports,2012,2:765.
-
[15] BECHT E,DE REYNIES A,GIRALDO N A,et al.Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy[J].Clin Cancer Res,2016,22:4057-4066.
-
[16] PRABHAKARAN S,RIZK V T,MA Z,et al.Evaluation of invasive breast cancer samples using a 12-chemokine gene expression score:Correlation with clinical outcomes [J].Breast Cancer Res,2017,19:71.
-
[17] HENNEQUIN A,DERANGERE V,et al.Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients[J].Oncoimmunology,2016,5:e1054598.
-
[18] KROEGER D R,MILNE K,NELSON B H.Tumorinfiltrating plasma cells are associated with tertiary lymphoid structures,cytolytic T-cell responses,and superior prognosis in ovarian cancer[J].Clin Cancer Res,2016,22:3005-3015.
-
[19] WU R,GUO W,QIU X,et al.Comprehensive analysis of spatial architecture in primary liver cancer[J].Sci Adv,2021,7(51):eabg3750.
-
[20] CALDERARO J,PETITPREZ F,BECHT E,et al.Intratumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma [J].Journal of Hepatology,2019,70:58-65.
-
[21] GU-TRANTIEN C,LOI S,GARAUD S,et al.CD4+ follicular T helper cell infiltration predicts breast cancer survival[J].J Clin Invest,2013,123:2873-2892.
-
[22] LAUMONT C M,NELSON B H.B cells in the tumor microenvironment:Multi-faceted organizers,regulators,and effectors of anti-tumor immunity[J].Cancer Cell,2023,41:466-489.
-
[23] DIEU-NOSJEAN M C,GOC J,GIRALDO N A,et al.Tertiary lymphoid structures in cancer and beyond[J].Trends Immunol,2014,35:571-580.
-
[24] CHI X,LI Y,QIU X.V(D)J recombination,somatic hypermutation and class switch recombination of immunoglobulins:Mechanism and regulation[J].Immunology,2020,160:233-247.
-
[25] GERMAIN C,GNJATIC S,TAMZALIT F,et al.Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer[J].Am J Respir Crit Care Med,2014,189:832-844.
-
[26] MONTFORT A,PEARCE O,MANIATI E,et al.A strong B-cell response is part of the immune landscape in human highgrade serous ovarian metastases[J].Clin Cancer Res,2017,23:250-262.
-
[27] BISWAS S,MANDAL G,PAYNE K K,et al.IgA transcytosis and antigen recognition govern ovarian cancer immunity[J].Nature,2021,591:464-470.
-
[28] MEYLAN M,PETITPREZ F,BECHT E,et al.Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer[J].Immunity,2022,55:527-541.e5.
-
[29] WIELAND A,PATEL M R,CARDENAS M A,et al.Defining HPV-specific B cell responses in patients with head and neck cancer[J].Nature,2021,597:274-278.
-
[30] CIPPONI A,MERCIER M,SEREMET T,et al.Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases[J].Cancer Research,2012,72:3997-4007.
-
[31] NIELSEN J S,SAHOTA R A,MILNE K,et al.CD20+ tumor-infiltrating lymphocytes have an atypical CD27-memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer[J].Clin Cancer Res,2012,18:3281-3292.
-
[32] SCHLOSSER H A,THELEN M,LECHNER A,et al.B cells in esophago-gastric adenocarcinoma are highly differentiated,organize in tertiary lymphoid structures and produce tumor-specific antibodies[J].Oncoimmunology,2019,8:e1512458.
-
[33] CORONELLA J A,SPIER C,WELCH M,et al.Antigendriven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast[J].J Immunol,2002,169:1829-1836.
-
[34] NZULA S,GOING J J,et al.Antigen-driven clonal proliferation,somatic hypermutation,and selection of B lymphocytes infiltrating human ductal breast carcinomas [J].Cancer Research,2003,63:3275-3280.
-
[35] ZIRAKZADEH A A,SHERIF A,ROSENBLATT R,et al.Tumour-associated B cells in urothelial urinary bladder cancer[J].Scand J Immunol,2020,91:e12830.
-
[36] MURAKAMI Y,SAITO H,SHIMIZU S,et al.Increased regulatory B cells are involved in immune evasion in patients with gastric cancer[J].Scientific Reports,2019,9:13083.
-
[37] ZHOU X,SU Y X,LAO X M,et al.CD19+ IL-10+ regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4+ T cells to CD4+ Foxp3+ regulatory T cells[J].Oral Oncol,2016,53:27-35.
-
[38] SHALAPOUR S,LIN X J,BASTIAN I N,et al.Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity[J].Nature,2017,551(7680):340-345.
-
[39] MANTOVANI A,SOZZANI S,LOCATI M,et al.Macrophage polarization:Tumorassociated macrophages as a paradigm for polarized M2 mononuclear phagocytes [J].Trends Immunol,2002,23:549-555.
-
[40] KINKER G S,VITIELLO GAF,FERREIRA WAS,et al.B Cell orchestration of anti-tumor immune responses:A matter of cell localization and communication[J].Front Cell Dev Biol,2021,9:678127.
-
[41] XIAO X,LAO X M,CHEN M M,et al.PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression[J].Cancer Discov,2016,6:546-559.
-
[42] OLIVEIRA G,WU C J.Dynamics and specificities of T cells in cancer immunotherapy[J].Nature Reviews Cancer,2023,23:295-316.
-
[43] SLEDZINSKA A,VILA DE MUCHA M,BERGERHOFF K,et al.Regulatory T cells restrain interleukin-2-and blimp1-dependent acquisition of cytotoxic function by CD4+ T cells[J].Immunity,2020,52:151-166.e6.
-
[44] GOC J,GERMAIN C,VO-BOURGAIS T K,et al.Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells[J].Cancer Research,2014,74:705-715.
-
[45] DE CHAISEMARTIN L,GOC J,DAMOTTE D,et al.Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer[J].Cancer Research,2011,71:6391-6399.
-
[46] ENGELHARD V H,RODRIGUEZ A B,MAULDIN I S,et al.Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity[J].J Immunol,2018,200:432-442.
-
[47] DI CARO G,BERGOMAS F,GRIZZI F,et al.Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in earlystage colorectal cancers[J].Clin Cancer Res,2014,20:2147-2158.
-
[48] GOC J,FRIDMAN W H,HAMMOND S A,et al.Tertiary lymphoid structures in human lung cancers,a new driver of antitumor immune responses[J].Oncoimmunology,2014,3:e28976.
-
[49] ALSUGHAYYIR J,PETTIGREW G J,MOTALLEBZADEH R.Spoiling for a fight:B lymphocytes as initiator and effector populations within tertiary lymphoid organs in autoimmunity and transplantation[J].Frontiers in Im‐ munology,2017,8:1639.
-
[50] CILLO A R,KURTEN CHL,TABIB T,et al.Immune landscape of viral and carcinogen-driven head and neck cancer[J].Immunity,2020,52:183-199.e9.
-
[51] SCHURCH C M,BHATE S S,BARLOW G L,et al.Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front[J].Cell,2020,182:1341-1359.e19.
-
[52] RODRIGUEZ A B,ENGELHARD V H.Insights into tumor-associated tertiary lymphoid structures:Novel targets for antitumor immunity and cancer immunotherapy[J].Cancer Immunology Research,2020,8:1338-1345.
-
[53] GIRALDO N A,BECHT E,PAGES F,et al.Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer[J].Clin Cancer Res,2015,21:3031-3040.
-
[54] MUNOZ-ERAZO L,RHODES J L,MARION V C,et al.Tertiary lymphoid structures in cancer-considerations for patient prognosis[J].Cell Mol Immunol,2020,17:570-575.
-
[55] JONES E,GALLIMORE A,et al.Defining high endothelial venules and tertiary lymphoid structures in cancer[J].Methods Mol Biol,2018,1845:99-118.
-
[56] VELLA G,GUELFI S,BERGERS G.High endothelial venules:A vascular perspective on tertiary lymphoid structures in cancer[J].Frontiers in Immunology,2021,12:736670.
-
[57] ZHAN Z,SHI J L,YI R Z,et al.High endothelial venules proportion in tertiary lymphoid structure is a prognostic marker and correlated with anti-tumor immune microenvironment in colorectal cancer[J].Ann Med,2023,55:114-126.
-
[58] FRIDMAN W H,ZITVOGEL L,SAUTES-FRIDMAN C,et al.The immune contexture in cancer prognosis and treatment[J].Nat Rev Clin Oncol,2017,14:717-734.
-
[59] MEIER D,BORNMANN C,CHAPPAZ S,et al.Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells[J].Immunity,2007,26:643-654.
-
[60] DETEIX C,ATTUIL-AUDENIS V,DUTHEY A,et al.Intragraft Th17 infiltrate promotes lymphoid neogenesis and hastens clinical chronic rejection[J].J Immunol,2010,184:5344-5351.
-
[61] PETERS A,PITCHER L A,SULLIVAN J M,et al.Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation[J].Immunity,2011,35:986-996.
-
[62] LOCHNER M,OHNMACHT C,PRESLEY L,et al.Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells[J].The Journal of Experimental Medicine,2011,208:125-134.
-
[63] GUEDJ K,KHALLOU-LASCHET J,CLEMENT M,et al.M1 macrophages act as LTbetaR-independent lymphoid tissue inducer cells during atherosclerosis-related lymphoid neogenesis[J].Cardiovasc Res,2014,101:434-443.
-
[64] TANG H,ZHU M,QIAO J,et al.Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy[J].Cell Mol Immunol,2017,14:809-818.
-
[65] WEI Y,ZHAO Q,GAO Z,et al.The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy[J].J Clin Invest,2019,129:3347-3360.
-
[66] BORELLI A,IRLA M.Lymphotoxin:From the physiology to the regeneration of the thymic function[J].Cell Death Differ,2021,28:2305-2314.
-
[67] LUTHER S A,BIDGOL A,HARGREAVES D C,et al.Differing activities of homeostatic chemokines CCL19,CCL21,and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis[J].J Immunol,2002,169:424-433.
-
[68] LUTHER S A,LOPEZ T,BAI W,et al.BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis[J].Immunity,2000,12:471-481.
-
[69] FLEIGE H,RAVENS S,MOSCHOVAKIS G L,et al.IL17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs [J].The Journal of Experimental Medicine,2014,211:643-651.
-
[70] MEBIUS R E.Organogenesis of lymphoid tissues[J].Nature Reviews Immunology,2003,3:292-303.
-
[71] CHELVANAMBI M,FECEK R,TAYLOR J,et al.STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment[J].J Immunother Cancer,2021,9(2):e001906.
-
[72] HU C,YOU W,KONG D,et al.Tertiary lymphoid structure-associated B cells enhance CXCL13+ CD103+ CD8+ tissue-resident memory T-cell response to programmed cell death protein 1 blockade in cancer immunotherapy [J].Gastroenterology,2024,166(6):1069-1084.
-
[73] CARREGA P,LOIACONO F,DI CARLO E,et al.NCR+ ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures[J].Nature Communications,2015,6:8280.
-
[74] GAO J,NAVAI N,ALHALABI O,et al.Neoadjuvant PD-L1 plus CTLA-4 blockade in patients with cisplatinineligible operable high-risk urothelial carcinoma[J].Nat Med,2020,26:1845-1851.
-
[75] GRISS J,BAUER W,WAGNER C,et al.B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma[J].Nature Communications,2019,10:4186.
-
[76] THOMMEN D S,KOELZER V H,HERZIG P,et al.A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade[J].Nat Med,2018,24:994-1004.
-
[77] HOLLERN D P,XU N,THENNAVAN A,et al.B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer[J].Cell,2019,179:1191-1206.e21.
-
[78] SANCHEZ-ALONSO S,SETTI-JEREZ G,ARROYO M,et al.A new role for circulating T follicular helper cells in humoral response to anti-PD-1 therapy[J].J Immunother Cancer,2020,8.
-
[79] ALLEN E,JABOUILLE A,RIVERA L B,et al.Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation[J].Science Translational Medicine,2017,9(385):eaak9679.
-
[80] BUISSERET L,GARAUD S,DE WIND A V,et al.Tumor-infiltrating lymphocyte composition,organization and PD-1/PD-L1 expression are linked in breast cancer [J].Oncoimmunology,2017,6:e1257452.
-
[81] CIMINO-MATHEWS A,THOMPSON E,TAUBE J M,et al.PD-L1(B7-H1)expression and the immune tumor microenvironment in primary and metastatic breast carcinomas[J].Hum Pathol,2016,47:52-63.
-
[82] VAN DIJK N,GIL-JIMENEZ A,SILINA K,et al.The tumor immune landscape and architecture of tertiary lymphoid structures in urothelial cancer[J].Front Immunol,2021,12:793964.
-
[83] COTTRELL T R,THOMPSON E D,FORDE P M,et al.Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma:A proposal for quantitative immune-related pathologic response criteria(irPRC)[J].Ann Oncol,2018,29(8):1853-1860.
-
[84] VAN DIJK N,GIL-JIMENEZ A,SILINA K,et al.Preop‐ erative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer:The NABUCCO trial[J].Nat Med,2020,26(12):1839-1844.
-
[85] COTTRELL T R,THOMPSON E D,FORDE P M,et al.Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma:A proposal for quantitative immune-related pathologic response criteria(irPRC)[J].Ann Oncol,2018,29:1853-1860.
-
[86] HO W J,ZHU Q,DURHAM J,et al.Neoadjuvant cabozantinib and nivolumab converts locally advanced HCC into resectable disease with enhanced antitumor immunity[J].Nat Cancer,2021,2(9):891-903.
-
摘要
三级淋巴结构 (TLS) 是近年来在慢性炎症刺激的非淋巴组织中发现的异位淋巴结构,与淋巴结具有相似的结构和功能,主要由B淋巴细胞、T淋巴细胞和树突状细胞组成,也是抗肿瘤免疫应答启动的直接部位。肿瘤中TLS促进免疫细胞,特别是T细胞和B细胞等效应免疫细胞,向肿瘤微环境聚集,为抗肿瘤的细胞和体液免疫应答提供一个重要的局部场所,预示患者可能有良好的生存预后和积极的免疫治疗反应。本文概述了肿瘤相关TLS的评估鉴定、结构与组成、以及形成的驱动因素,并阐述了 TLS 作为潜在生物标志物在肿瘤免疫治疗中的作用及潜在临床运用价值。此外,本文还讨论了 TLS在肿瘤免疫治疗中的挑战和未来研究方向。
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid structures found in non-lymphoid tissues under chronic inflammatory conditions in recent years. Similar to lymph nodes, TLS primarily consist of B lymphocytes, T lymphocytes, and dendritic cells. TLS are also the direct sites where antitumor immune responses are initiated. Within tumors, TLS promote the aggregation of immune cells, particularly effector T cells and B cells, to the tumor microenvironment, providing an important local site for cellular and humoral antitumor immune responses. This underscores their potential to predict favorable patient prognosis and positive responses to immune therapies. This review provides an overview of assessing and characterizing tumor-associated TLS, detailing their structural elements, composition, and the factors driving their formation. Furthermore, it explores TLS as promising biomarkers in tumor immunotherapy and their prospective clinical applications. The review also addresses the challenges and future prospects of TLS in the context of tumor immunotherapy.