-
0 引言
-
肝移植是目前治疗终末期肝病最有效的手段,然而移植物功能在术中和术后会不可避免的经历损伤[1-3]。首先,移植肝从离体到移植术完成会经历缺血再灌注损伤 (Ischemia Reperfusion Injury,IRI)。血液供应的暂时中断导致肝脏处于腺苷三磷酸 (Adenosine Triphosphate,ATP) 低产出、电解质失衡和抗氧化剂低水平的状态。在再灌注阶段,抗氧化剂无法中和肝内产生的大量活性氧而引发进一步损伤[4,5]。其次,术后移植肝在受者体内会受到免疫系统的识别和攻击。为避免排斥反应所致的肝功能受损,移植受者术后一般需终身服用免疫抑制剂。然而,长期使用免疫抑制剂会增加感染、恶性肿瘤复发等并发症的发生率,严重影响患者长期预后[6-8]。由此可见,移植术后免疫耐受的建立至关重要,而移植术中 IRI和术后机体免疫排斥反应是影响移植肝质量和后续移植效果的主要因素。
-
由于移植肝短缺,扩大标准供者 (Extended Criteria Donors, ECD) 肝脏逐渐应用于临床。 ECD 包括脂肪变性、冷热缺血时间延长、高龄和循环死亡后捐献供者 (Donors after Circulatory Death,DCD) 等。已有研究指出,ECD 肝脏更不耐受 IRI和免疫排斥反应,增加了原发性移植肝无功能、早期移植物功能不全和缺血相关胆道疾病等术后并发症的发生率[9]。近期,Zhang 等[10] 通过分析比较57 894例非ECD和17 156例ECD移植预后,发现控制冷缺血时间小于6 h可使ECD肝脏移植效果接近标准供肝。因此,从移植肝保存与功能修复出发,减少移植过程中 IRI及免疫排斥反应,是提升肝移植疗效的有效策略。近年来,基于干细胞和体细胞的细胞治疗逐渐应用于免疫调节、肿瘤治疗、器官再生和修复等各个领域,并展现出巨大潜能[11,12]。本文将综述细胞治疗在移植肝保存与功能修复中的研究进展,为细胞治疗在肝移植领域的应用与推广提供理论依据。
-
1 器官保存与修复技术
-
器官移植的成功离不开器官保存与修复技术。考虑到低温具有降低组织代谢活性的作用,静态冷保存 (Static Cold Storage,SCS) 以及低温机械灌注 (Hypothermic Machine Perfusion,HMP) 受到早期移植学界的青睐。随后,Collins液、威斯康星大学保存液 (University of Wisconsin solution,UW 液) 等保存液的出现使得学者们发现SCS的器官保存效果不劣于 HMP,而 SCS 成本低、操作方便的特点进一步使其成为了早期器官保存的金标准[13]。但近年来的研究结果指出,HMP、低温氧合机械灌注 (Hypothermic Oxygenated Machine Perfusion, HOPE) 和常温机械灌注 (Normothermic Machine Perfusion,NMP) 等多种机械灌注方式减轻移植物 IRI 效果显著优于 SCS,从而降低了早期移植物功能不全、非吻合口胆管狭窄等术后并发症的发生风险[14-17]。其中 NMP 有助于器官恢复和保持生理状态,并可显著延长器官保存时间[18],这为移植前进行器官修复带来了更多机会。随着细胞分离和培养技术的发展,将细胞治疗应用于器官保存和修复正逐渐成为研究热点[19,20]。
-
2 细胞治疗
-
细胞治疗是指将某些具有特定功能的细胞或其衍生的生物活性分子输入体内,通过去分化、转分化或细胞间通讯等途径增加功能细胞数目和调节微环境,达到治疗疾病的目的[21]。根据细胞来源不同,细胞治疗主要可分为体细胞和干细胞两类。在修复肝脏功能损伤方面,功能肝细胞、巨噬细胞和 T细胞移植是目前应用最广泛的体细胞治疗。肝细胞移植是最早应用于肝脏疾病的细胞治疗,但免疫排斥、移植率低、体内扩增能力差等原因限制了其应用[22]。中国科学院的惠利健团队[23] 报道,可通过去分化技术诱导具有长期增殖能力的肝细胞。同时,该团队指出巨噬细胞激活是导致肝细胞移植率低的重要原因,而在免疫抑制情况下输注具有长期增殖能力的肝细胞可以显著改善肝脏功能。此外,巨噬细胞、T细胞等免疫细胞可通过维持免疫稳态减轻移植肝IRI和免疫排斥反应[11,24]。
-
相较于体细胞,干细胞具有良好的免疫耐受性、自我更新潜力和可塑性等优点[25]。间充质干细胞 (Mesenchymal Stem Cells,MSCs)、人羊膜上皮细胞 (human Amniotic Epithelial Cells,hAECs) 和人诱导多能干细胞 (induced Pluripotent Stem Cells,iPSCs) 等多种干细胞均被报道可通过抗炎、抗纤维化和免疫调节等发挥改善肝脏功能的作用[26-28]。其中,MSCs 来源广泛、易获取分离,是应用最广的干细胞,目前已有多项临床研究探究其在肝脏功能修复和提升中的疗效[29]。细胞外泌体 (Exosomes, Exos) 中含有蛋白质或核糖核酸 (Ribonucleic Acid,RNA),被认为是介导细胞间通讯、令干细胞发挥作用的重要途径之一。与干细胞相比,Exos 体积更小、更易储存,且具有肝脏趋向性和更低的免疫原性[30],是未来细胞治疗的进一步发展方向。
-
3 移植肝保存与功能修复
-
细胞疗法可在移植多个阶段发挥改善肝脏功能与移植预后的作用 (见表1)。以下将从移植肝离体前、机械灌注和再灌注三个阶段着重阐述。
-
续表
-
3.1 移植肝离体前
-
移植肝离体后会先经历缺血过程,在血液再灌注后会进一步加重损伤。已有研究表明,在移植肝离体前输注干细胞或其 Exos可以减轻 IRI,并促进 IRI 后组织再生修复。Anger 等[31] 指出在缺血前 5 min通过下腔静脉输注成纤维细胞或其Exos仅有轻微促进肝脏再生的作用,而 MSCs或 MSCs-Exos 不仅可抑制炎症反应、减轻小鼠肝脏 IRI,还可显著促进 IRI后肝细胞再生。在缺血前 30 min通过尾静脉输注骨髓间充质干细胞 (Bone Marrow Mesenchymal Stem Cells,BMMSCs)-Exos 可显著下调再灌注后核因子 κB (Nuclear Factor-kappa B, NF-κB)、白细胞介素-6 (Interleukin-6,IL-6) 等炎症相关因子水平,从而减少肝脏细胞凋亡和组织坏死[32]。hAECs来源于羊膜囊,易从胎盘中分离获得。最新一项研究表明,术前 0.5 h 输注 hAECs 可通过降低 M1/M2 型巨噬细胞比值,减轻肝内炎症因子水平,从而在IRI中发挥保护作用[33]。
-
此外,提前输注免疫细胞可减轻 IRI。研究表明[34,35],缺血前 24 h 输注血红素加氧酶 1 (Heme Oxygenase1,HO1) /骨髓来源巨噬细胞可通过激活 Notch1/Hes1/Stat3 信号通路和促进巨噬细胞向 M2型分化发挥抗炎作用,从而减轻肝脏IRI。Feng 等[36,54] 在缺血前24 h向小鼠体内输注调节性T细胞,发现该细胞通过转化生长因子-β (Transforming Growth Factor-β,TGF-β) 信号通路调节巨噬细胞的免疫功能,从而减轻肝脏 IRI。值得注意的是,肝星状细胞 (Hepatic Stellate Cells,HSCs) 可通过释放维甲酸作用于 CD4+ T 细胞内相关受体,从而增加诱导调节性和天然调节性T细胞数量,发挥调节免疫稳态和肝脏保护作用[37]。在治疗过程中,输注的时间点和途径均会显著影响细胞或 Exos 在肝内的定植率,因此未来需要更多关注治疗策略及方案的优化,从而进一步提升其疗效。
-
3.2 机械灌注阶段
-
NMP不仅有助于移植肝恢复和保持生理状态,还有利于外缘细胞定植于离体肝脏,因此细胞治疗联合 NMP 的策略独具优势。研究显示[38,39], BMMSCs联合NMP可通过JNK-NF-κB和腺苷酸活化蛋白激酶 (Adenylate Activated Protein Kinase, AMPK) 信号通路改善 DCD 肝脏微循环和能量代谢,从而显著改善移植肝体外保存效果。进一步有研究发现,MSCs联合 NMP 灌注 2 h 可改善热缺血 6 h DCD 肝脏的胆汁生成等功能[40]。Tian 等[41] 指出 HO1/BMMSCs联合 NMP可通过激活 Wnt信号通路促进胆道周围腺体内胆祖细胞增殖和分化,从而发挥修复 DCD 供肝胆道损伤的作用。另有研究发现[42,43],HO1/BMMSCs 联合 NMP 通过抑制自然杀伤细胞 (Nature Killer cells,NK)、CD8+ T 细胞激活和调节丝裂原活化蛋白激酶 (Mitogen-Activated Protein Kinase,MAPK) 信号通路抑制树突状细胞成熟,减少DCD肝脏移植后急性排斥反应。近期,多能成体祖细胞被首次报道通过 NMP 输注入人类移植肝,并在 ECD 肝脏中通过释放大量可溶性活性因子 (包括粒细胞巨噬细胞刺激因子、单核细胞趋化因子-1) 发挥抗炎和免疫调节作用[44]。
-
此外,Verstegen 等[45] 首次发现,HOPE 可将荧光标记的 MSCs 有效输注入猪肝移植物。灌注 30 min后,荧光成像结果显示,大量 MSCs驻留在肝脏中,且具有活跃的旁分泌活性,但具体的调节机制有待更深入的探究。最近一项研究指出, HOPE 可用于脂肪变性供肝移植[55],提示 HOPE 联合细胞治疗有望进一步提升 ECD 肝脏质量及受者移植预后。考虑到灌注温度、携氧条件及灌注液成分等多方面因素均会影响细胞活性以及治疗效果,未来还需更多研究去优化细胞治疗联合机械灌注的具体条件。
-
3.3 再灌注后
-
氧自由基的产生以及白细胞介导的炎症反应是再灌注后移植肝损伤加重的主要原因[4]。Yao 等[46] 在大鼠 IRI 模型中尾静脉输注人脐带来源 MSCs-Exos,发现其可抑制中性粒细胞浸润及其介导的氧化应激反应,从而减轻肝脏再灌注损伤。值得注意的是,该项研究发现 Exos 中含有本存在于线粒体内的锰超氧化物歧化酶,而敲低该蛋白的表达会显著降低 MSCs-Exos 的抗氧化应激和抗凋亡作用。 Nong 等[47] 将人诱导多能干细胞进一步诱导为 MSCs,并探究其 Exos 在大鼠 IRI 中的保护作用。结果显示,再灌注后通过下腔静脉输注其 Exos 可显著降低肝细胞氧化应激和炎症反应,抑制肝细胞凋亡。在大鼠脂肪肝 IRI 和移植模型中,HO1 / BMMSCs-Exos 被报道可通过 miR-29a-3p 和 miR124-3p抑制铁死亡,从而减轻肝脏损伤[48,49]。缺血型胆道病变是移植术后的严重并发症,而一项临床试验指出,与常规治疗组相比,术后输注脐带来源 MSCs可在治疗后第20 w显著降低缺血型胆道病变患者总胆红素、γ-谷氨酰转移酶和碱性磷酸酶水平,从而减少患者行介入治疗的需要[56]。因此,再灌注后进行细胞治疗有助于通过减轻氧化应激和炎症反应减轻肝脏损伤。
-
此外,有研究表明,移植术后输注 MSCs可促进免疫耐受的建立。一项临床试验指出与免疫抑制剂组相比,免疫抑制剂联合脐带来源MSCs治疗组调节性T细胞比例及其与辅助性T细胞17的比值在细胞治疗后第4 w显著上调,而谷丙转氨酶等肝功能指标显著下调[57]。进一步研究使 MSCs过表达具有免疫调节作用的 TGF-β1,并将其通过门静脉输注入大鼠肝移植模型中,发现 TGF-β1/MSCs 相较于MSCs能更有效避免排斥反应的发生,从而改善生存率[50]。Li等[51] 利用大鼠肝移植模型分析比较了 HO1/BMMSCs 和 BMMSCs 的治疗效果,结果表明,HO1/BMMSCs对NK、IL-2、IL-6、IL-17、肿瘤坏死因子 α 和干扰素 γ 有更强的抑制作用,且能通过显著提高调节性 T 细胞、IL-10 和 TGF-β 等水平发挥免疫调节作用。50%减肝体积移植术后通过背浅静脉输注 HO1/BMMSCs 被报道可改善免疫排斥反应、肝窦微循环及肝细胞能量代谢,从而提高肝移植术后生存率[52,53]。
-
值得关注的是,术后输注 HO1/BMMSCs 可改变菌群组成改善肠道结构和功能,进而通过肠肝轴改善脂肪变性供肝移植预后[58],但其中具体机制仍有待进一步探索。目前多数研究聚焦细胞治疗对于肝脏的直接影响,未来还需更多研究关注细胞治疗通过如肠道、脾脏等肝外器官对肝脏的间接作用。一项病例报告指出活体肝移植受者在术后第0天和第2天接受多能成体祖细胞移植治疗后无明显不良反应发生。值得注意的是,在第2次输注多能成体祖细胞后,受者体内调节性T细胞水平相较于术前显著升高,这可能与CD14+ 单核细胞内主要组织相容性复合体Ⅱ表达下调相关[59]。
-
4 结语
-
综上,细胞治疗在肝移植多个阶段可以通过减轻氧化应激、炎症反应、免疫排斥和促进细胞再生、胆道损伤修复等多个方面提升肝脏功能,改善移植预后。但目前的研究大多使用的是啮齿类动物模型,为促进临床转化,现有结论还需在和人同源性更高的动物模型中进行验证。细胞供体、获得培养工艺和移植受体等的差异性均会影响细胞治疗的最终效果,且如何稳定干细胞体外诱导分化状态也面临巨大困难,因此细胞生产工艺及精准治疗体系亟待进一步提高与完善。
-
HO1 在应激肝脏细胞保护中发挥着重要作用,且多项研究指出 HO1 修饰后的干细胞或免疫细胞具有更强的移植肝功能修复和提升作用[60],由此可见,深入解析肝脏再生和修复机制,并基于研究结果进一步对细胞进行修饰,将是今后改善基于细胞治疗提升移植肝质量效果的重要研究方向。细胞治疗的潜在机制尚不明确,未来需更深入的研究去探索,以期实现移植肝精准修复与功能提升。
-
参考文献
-
[1] 杨墨丹,鲁迪,陈俊丽,等.大数据时代背景下的中国肝移植质量提升[J].实用器官移植电子杂志,2020,8(2):93-95.
-
[2] 李建辉,徐骁,谢海洋,等.中国移植器官保护专家共识(2022 版)[J].中华普通外科学文献(电子版),2022,16(4):241-254.
-
[3] SOUSA DA SILVA R X,MUELLHAUPT B,DUTKOWSKI P,et al.Liver transplantation for malignant liver tumors [J].iLIVER,2022,1(1):3-11.
-
[4] GAO F,QIU X,WANG K,et al.Targeting the hepatic microenvironment to improve ischemia/reperfusion injury:new insights into the immune and metabolic compartments [J].Aging Dis,2022,13(4):1196-1214.
-
[5] PU J L,HUANG Z T,LUO Y H,et al.Fisetin mitigates hepatic ischemia-reperfusion injury by regulating GSK3β/AMPK/NLRP3 inflammasome pathway[J].Hepatobiliary Pancreat Dis Int,2021,20(4):352-360.
-
[6] CVETKOVSKI F,HEXHAM J M,BERGLUND E.Strategies for liver transplantation tolerance[J].Int J Mol Sci,2021,22(5):2253.
-
[7] BADWEI N.Hepatic allograft rejection after liver transplantation:Clinicopathological debates! [J].iLIVER,2023,2(2):116-121.
-
[8] ZHAO X F,LIN D D,LI N,et al.Diagnosis and treatment of acute graft-versus-host disease after liver transplantation:A report of 11cases[J].Transpl Immunol,2020,62:101307.
-
[9] LIN Y,HUANG H,CHEN L,et al.Assessing donor liver quality and restoring graft function in the era of extended criteria donors[J].J Clin Transl Hepatol,2023,11(1):219-230.
-
[10] ZHANG T,DUNSON J,KANWAL F,et al.Trends in outcomes for marginal allografts in liver transplant[J].JAMA Surg,2020,155(10):926-932.
-
[11] HANN A,OO Y H,PERERA M.Regulatory T-cell therapy in liver transplantation and chronic liver disease [J].Front Immunol,2021,12:719954.
-
[12] DWYER B J,MACMILLAN M T,BRENNAN P N,et al.Cell therapy for advanced liver diseases:repair or rebuild[J].J Hepatol,2021,74(1):185-199.
-
[13] TODO S,NERY J,YANAGA K,et al.Extended preservation of human liver grafts with UW solution[J].Jama,1989,261(5):711-714.
-
[14] TINGLE S J,FIGUEIREDO R S,MOIR J A,et al.Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation[J].Cochrane Database Syst Rev,2019,3(3):cd011671.
-
[15] VAN RIJN R,SCHURINK I J,DE VRIES Y,et al.Hypothermic machine perfusion in liver transplantation-A randomized trial[J].N Engl J Med,2021,384(15):1391-1401.
-
[16] CZIGANY Z,PRATSCHKE J,FRONĚK J,et al.Hypothermic oxygenated machine perfusion reduces early allograft injury and improves post-transplant outcomes in extended criteria donation liver transplantation from donation after brain death:results from a multicenter randomized controlled trial(HOPE ECD-DBD)[J].Ann Surg,2021,274(5):705-712.
-
[17] NAKAJIMA D,CHEN F,OKITA K,et al.Reconditioning lungs donated after cardiac death using short-term hypothermic machine perfusion[J].Transplantation,2012,94(10):999-1004.
-
[18] NASRALLA D,COUSSIOS C C,MERGENTAL H,et al.A randomized trial of normothermic preservation in liver transplantation[J].Nature,2018,557(7703):50-56.
-
[19] RAFATI A,ESMAEILI GOUVARCHIN GHALEH H,AZARABADI A,et al.Stem cells as an ideal carrier for gene therapy:a new approach to the treatment of hepatitis C virus[J].Transpl Immunol,2022,75:101721.
-
[20] GUO Y Y,WANG H S,HUANG L L,et al.Small extracellular vesicles-based cell-free strategies for therapy [J].MedComm,2021,2(1):17-26.
-
[21] HU X H,CHEN L,WU H,et al.Cell therapy in endstage liver disease:replace and remodel[J].Stem Cell Res Ther,2023,14(1):141.
-
[22] CHEN L J,ZHANG N,HUANG Y Q,et al.Multiple dimensions of using mesenchymal stem cells for treating liver diseases:from bench to beside[J].Stem Cell Rev Rep,2023.
-
[23] WANG C H,ZHANG L D,SUN Z,et al.Dedifferentiationassociated inflammatory factors of long-term expanded human hepatocytes exacerbate their elimination by macrophages during liver engraftment[J].Hepatology,2022,76(6):1690-1705.
-
[24] WEN Y,LAMBRECHT J,JU C,et al.Hepatic macrophages in liver homeostasis and diseases-diversity,plasticity and therapeutic opportunities[J].Cell Mol Immunol,2021,18(1):45-56.
-
[25] DENG Y,XIA B,CHEN Z,et al.Stem cell-based therapy strategy for hepatic fibrosis by targeting intrahepatic cells [J].Stem Cell Rev Rep,2022,18(1):77-93.
-
[26] GOONETILLEKE M,KUK N,CORREIA J,et al.Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells[J].Stem Cell Res Ther,2021,12(1):429.
-
[27] KUK N,HODGE A,SUN Y,et al.Human amnion epithelial cells and their soluble factors reduce liver fibrosis in murine non-alcoholic steatohepatitis[J].J Gastroenterol Hepatol,2019,34(8):1441-1449.
-
[28] MOAYEDFARD Z,SANI F,ALIZADEH A,et al.The role of the immune system in the pathogenesis of NAFLD and potential therapeutic impacts of mesenchymal stem cell-derived extracellular vesicles[J].Stem Cell Res Ther,2022,13(1):242.
-
[29] EOM Y W,YOON Y,BAIK S K.Mesenchymal stem cell therapy for liver disease:current status and future perspectives[J].Curr Opin Gastroenterol,2021,37(3):216-223.
-
[30] WU R,FAN X,WANG Y,et al.Mesenchymal stem cellderived extracellular vesicles in liver immunity and therapy[J].Front Immunol,2022,13:833878.
-
[31] ANGER F,CAMARA M,ELLINGER E,et al.Human mesenchymal stromal cell-derived extracellular vesicles improve liver regeneration after ischemia reperfusion injury in mice[J].Stem Cells Dev,2019,28(21):1451-1462.
-
[32] HAGA H,YAN I K,BORRELLI D A,et al.Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury[J].Liver Transpl,2017,23(6):791-803.
-
[33] 疏文志,杨梦凡,潘斌华,等.人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J].中华移植杂志(电子版),2023,17(1):36-41.
-
[34] HUANG J,SHEN X D,YUE S,et al.Adoptive transfer of heme oxygenase-1(HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor(Nrf2)antiinflammatory phenotype in liver ischemia/reperfusion injury[J].Mol Med,2014,20(1):448-455.
-
[35] KE B,SHEN X D,GAO F,et al.Adoptive transfer of ex vivo HO-1 modified bone marrow-derived macrophages prevents liver ischemia and reperfusion injury[J].Mol Ther,2010,18(5):1019-1025.
-
[36] FENG M,WANG Q,ZHANG F,et al.Ex vivo induced regulatory T cells regulate inflammatory response of Kupffer cells by TGF-beta and attenuate liver ischemia reperfusion injury[J].Int Immunopharmacol,2012,12(1):189-196.
-
[37] FENG M,WANG Q,WANG H,et al.Adoptive transfer of hepatic stellate cells ameliorates liver ischemia reperfusion injury through enriching regulatory T cells[J].Int Immunopharmacol,2014,19(2):267-274.
-
[38] YANG L,CAO H,SUN D,et al.Normothermic machine perfusion combined with bone marrow mesenchymal stem cells improves the oxidative stress response and mitochondrial function in rat donation after circulatory death livers[J].Stem Cells Dev,2020,29(13):835-852.
-
[39] YANG L,CAO H,SUN D,et al.Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality-the important role of hepatic microcirculation in donation after circulatory death[J].Cell Tissue Res,2020,381(2):239-254.
-
[40] SASAJIMA H,MIYAGI S,KAKIZAKI Y,et al.Cytoprotective effects of mesenchymal stem cells during liver transplantation from donors after cardiac death in rats[J].Transplant Proc,2018,50(9):2815-2820.
-
[41] TIAN X,CAO H,WU L,et al.Heme oxygenase-1-modified bone marrow mesenchymal stem cells combined with normothermic machine perfusion repairs bile duct injury in a rat model of DCD liver transplantation via activation of peribiliary glands through the Wnt pathway [J].Stem Cells Int,2021,2021:9935370.
-
[42] WU L,CAO H,TIAN X,et al.Bone marrow mesenchymal stem cells modified with heme oxygenase-1 alleviate rejection of donation after circulatory death liver transplantation by inhibiting dendritic cell maturation in rats[J].Int Immunopharmacol,2022,107:108643.
-
[43] CAO H,WU L,TIAN X,et al.HO-1/BMMSC perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation by regulating NKT cell co-inhibitory receptors in rats[J].Stem Cell Res Ther,2021,12(1):587.
-
[44] LAING R W,STUBBLEFIELD S,WALLACE L,et al.The delivery of multipotent adult progenitor cells to extended criteria human donor livers using normothermic machine perfusion[J].Front Immunol,2020,11:1226.
-
[45] VERSTEGEN M M A,MEZZANOTTE L,RIDWAN R Y,et al.First report on ex vivo delivery of paracrine active human mesenchymal stromal cells to liver grafts during machine perfusion[J].Transplantation,2020,104(1):e5-e7.
-
[46] YAO J,ZHENG J,CAI J,et al.Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response[J].Faseb J,2019,33(2):1695-1710.
-
[47] NONG K,WANG W,NIU X,et al.Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats[J].Cytotherapy,2016,18(12):1548-1559.
-
[48] LI X,WU L,TIAN X,et al.miR-29a-3p in exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells alleviates steatotic liver ischemiareperfusion injury in rats by suppressing ferroptosis via iron responsive element binding protein 2[J].Oxid Med Cell Longev,2022,2022:6520789.
-
[49] WU L,TIAN X,ZUO H,et al.miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts [J].J Nanobiotechnology,2022,20(1):196.
-
[50] TANG J,YANG R,LV L,et al.Transforming growth factor-β-expressing mesenchymal stem cells induce local tolerance in a rat liver transplantation model of acute rejection[J].Stem Cells,2016,34(11):2681-2692.
-
[51] LI P,ZHANG Y,LI Q,et al.Effect of HO-1-modified BMMSCs on immune function in liver transplantation[J].Sci Rep,2022,12(1):3046.
-
[52] YANG L,SHEN Z Y,WANG R R,et al.Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation[J].World J Gastroenterol,2017,23(19):3449-3467.
-
[53] SHEN Z Y,WU B,LIU T,et al.Immunomodulatory effects of bone marrow mesenchymal stem cells overexpressing heme oxygenase-1:protective effects on acute rejection following reduced-size liver transplantation in a rat model [J].Cell Immunol,2017,313:10-24.
-
[54] BEYZAEI Z,SHOJAZADEH A,GERAMIZADEH B.The role of regulatory T cells in liver transplantation[J].Transpl Immunol,2022,70:101512.
-
[55] LAI Q,RUBERTO F,MELANDRO F,et al.Hypothermic oxygenated perfusion for a steatotic liver graft[J].Hepato‐ biliary Pancreat Dis Int,2020,19(1):88-90.
-
[56] ZHANG Y C,LIU W,FU B S,et al.Therapeutic potentials of umbilical cord-derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation[J].Cytotherapy,2017,19(2):194-199.
-
[57] SHI M,LIU Z,WANG Y,et al.A pilot study of mesenchymal stem cell therapy for acute liver allograft rejection[J].Stem Cells Transl Med,2017,6(12):2053-2061.
-
[58] YUAN M,LIN L,CAO H,et al.Intestinal microbiota participates in the protective effect of HO-1/BMMSCs on liver transplantation with steatotic liver grafts in rats[J].Front Microbiol,2022,13:905567.
-
[59] SOEDER Y,LOSS M,JOHNSON C L,et al.First-inhuman case study:multipotent adult progenitor cells for immunomodulation after liver transplantation[J].Stem Cells Transl Med,2015,4(8):899-904.
-
[60] VERHEIJ M,ZEERLEDER S,VOERMANS C.Heme oxygenase-1:Equally important in allogeneic hematopoietic stem cell transplantation and organ transplantation?[J].Transpl Immunol,2021,68:101419.
-
摘要
肝移植是目前治疗终末期肝病最有效的手段。但供体器官短缺问题严重制约了临床肝移植的发展,缺血再灌注损伤及免疫排斥反应所造成的术后肝功能不全也使移植疗效受到显著影响。为改善供肝短缺现状,进一步提高肝移植疗效,多种基于干细胞和体细胞的治疗策略已经逐渐应用于移植肝功能修复与提升。目前细胞治疗的干预时间点可分为移植肝离体前、机械灌注阶段和再灌注后。本文综合了现有研究,就细胞治疗在移植肝保存与功能修复中的作用及潜在机制进行综述,以助力细胞治疗在肝移植领域的应用与推广。
Abstract
Liver transplantation is the most effective treatment for end-stage liver diseases. However, the shortage of donor livers severely restricts the application of liver transplantation, and the impairments of liver function caused by intraoperative ischemia reperfusion injury and postoperative immune rejection also significantly affect the therapeutic efficacy. In order to improve the shortage of donor livers and further improve the efficacy of liver transplantation, a variety of cell therapies based on stem cells or somatic cells have been tried to repair and improve donor liver function. At present, the time points for cell therapy can be divided into the stage before procurement of donor livers, machine perfusion stage and stage after reperfusion of donor livers. In this review, we summarize the efficacy and the underlying mechanisms of cell therapy in the preservation and function repair of donor livers, so as to facilitate the application and promotion of cell therapy in the field of liver transplantation.