en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王飞龙(1983-),男,江苏人,研究员,主要从事免疫代谢、急性肺损伤的研究。E-mail:wang_feilong@tongji.edu.cn

中图分类号:R563,R364.3+3

文献标识码:A

文章编号:2096-8965(2023)03-0021-04

DOI:10.12287/j.issn.2096-8965.20230304

参考文献 1
SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,et al.The aging lung:physiology,disease,and immunity [J].Cell,2021,184(8):1990-2019.
参考文献 2
BUTT Y,KURDOWSKA A,ALLEN T C,et al.Acute lung injury:a clinical and molecular review[J].Archives of Pathology and Laboratory Medicine,2016,140(4):345-350.
参考文献 3
BEERS M F,MORRISEY E E.The three R's of lung health and disease:repair,remodeling,and regeneration[J].The Journal of Clinical Investi,2011,121(6):2065-2073.
参考文献 4
WANSLEEBEN C,BARKAUSKAS C E,ROCK J R,et al.Stem cells of the adult lung:their development and role in homeostasis,regeneration,and disease[J].Wiley Interdisciplinary Reviews Developmental Biology,2013,2(1):131-148.
参考文献 5
AEGERTER H,LAMBRECHT B N,JAKUBZICK C V,et al.Biology of lung macrophages in health and disease [J].Immunity,2022,13,55(9):1564-1580.
参考文献 6
EVREN E,RINGQVIST E,WILLINGER T,et al.Origin and ontogeny of lung macrophages:from mice to humans [J].Immunology,2020,160(2):126-138.
参考文献 7
MOULD K J,BARTHEL L,MOHNING M P,et al.Cell origin dictates programming of resident versus recruited macrophages during acute lung injury[J].American Journal of Respiratory Cell and Molecular Biology,2017,57(3):294-306.
参考文献 8
DANG W P,TAO Y M,XU X X,et al.The role of lung macrophages in acute respiratory distress syndrome[J].Inflamm Res,2022,71:1417-1432.
参考文献 9
MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nature Reviews Disease Primers,2019,5(1):18.
参考文献 10
LUCAS R,CZIKORA I,SRIDHAR S,et al.Arginase 1:an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury[J].Frontiers In Immunology,2013,7(4):228.
参考文献 11
TANG L,ZHANG H,WANG C,et al.M2A and M2C macrophage subsets ameliorate inflammation and fibrop‐ roliferation in acute lung injury through interleukin 10 pathway[J].Shock,2017,48(1):119-129.
参考文献 12
ZHOU B,MAGANA L,HONG Z,et al.The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflam‐ matory injury[J].Nature Immunology,2020,21(11):1430-1443.
参考文献 13
CHENG P Y,LI S Y,CHENG H Y,et al.Macrophages in lung injury,repair,and fibrosis[J].Cells,2021,10(2):436.
参考文献 14
SCHERAGA R G,ABRAHAM S,NIESE K A,et al.TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis [J].The Journal of Immunology,2016,196(1):428-436.
参考文献 15
KIMURA H,SUZUKI M,KONNO S,et al.Orchestrating role of apoptosis inhibitor of macrophage in the resolution of acute lung injury[J].The Journal of Immunology,2017,199(11):3870-3882.
参考文献 16
HUNG L Y,SEN D,ONISKEY T K,et al.Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism[J].Mucosal Immunology,2019,12(1):64-76.
参考文献 17
ZACHARIAS W J,FRANK D B,ZEPP J A,et al.Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor[J].Nature,2018,555(7695):251-255.
参考文献 18
LECHNER A J,DRIVER I H,LEE J,et al.Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy[J].Cell Stem Cell,2017,21(1):120-134.
参考文献 19
MISHARIN A V,MORALES-NEBREDA L,REYFMAN P A,et al.Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span[J].Journal of Experimental Medicine,2017,214(8):2387-2404.
参考文献 20
SUBRAMANIAN S,BUSCH C J L,K MOLAWI K,et al.Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo [J].Nat Immunol,2022,23(3):458-468.
目录contents

    摘要

    肺脏作为与外界直接相通的器官,容易在病原微生物以及其它理化因素的作用下发生组织损伤。既往研究认为,肺脏是一个高度沉默的器官,其再生能力有限。但是,新近的一些研究发现,肺内存在多种上皮祖细胞或干细胞群,在肺损伤发生过程中这些细胞可被激活、分化,进而促进肺组织的再生。肺内存在多种亚型巨噬细胞,其在肺损伤的不同阶段均发挥着重要的作用,且与损伤后肺组织的再生密切相关。通过精细的干预单核/巨噬细胞的分化可能是减轻肺损伤、促进肺再生的有效手段。

    Abstract

    The risk of lung injury induced by microorganism infection or other physical/chemical insults is high due to the nature that the lung is constantly exposed to microbiota through inhalation. The lung was previously thought to be a highly quiescent tissue, which has limited reparative capacity. However, recent studies demonstrate that lung regeneration could be achieved as the tissues of the lung have facultative progenitor cell populations that can be activated to proliferate and differentiate in response to various injuries. There are several types of macrophages within the lung tissue, which play a key role in different phases of lung injury and are closely associated with lung regeneration after injury. Fine-tuning of the differentiation monocytes/macrophages could serve as an effective therapeutic approach to alleviate lung injury and promote lung regeneration.

  • 0 引言

  • 肺是人体呼吸系统中最主要的器官,介导包括气体交换、免疫调节、肺循环、造血等多种生理功能[1]。由于其独特的气体交换功能,肺脏不断接触各种病原微生物,极易诱发炎症反应并造成肺组织损伤[2]。此外,各种有害的理化因素可直接导致肺组织损伤[2]。既往研究认为,肺脏是一个高度“沉默”的组织,其内部细胞的轮替处于较低的水平,因此,肺脏在损伤后再生的能力非常有限[3]。但是,新近的研究发现,肺组织中存在多种祖细胞和干细胞群,其增殖分化的能力在肺损伤发生后可被激活,进而能够补充因损伤导致的各种功能细胞的缺失,促进肺组织再生[4]。这些研究的进展为通过调控肺再生来治疗多种肺部疾病,如急性肺损伤/ 急性呼吸窘迫综合征、慢性阻塞性肺疾病、肺纤维化等,提供了重要的依据。

  • 肺再生受到多种因素的精细调控,其中肺部巨噬细胞在肺再生过程中起着重要的作用。在健康状态下,肺部主要存在两种不同类型的巨噬细胞,即组织驻留的肺泡巨噬细胞 (Tissue-Resident Alveolar Macrophages,TR-AMs) 以及肺间质巨噬细胞 (Interstitial Macrophages,IMs)。而在病理状态下,如肺部感染导致的急性炎症反应阶段,循环中的单核细胞可被招募至肺组织中并进入肺泡,分化为巨噬细胞 (Monocyte-Derived Macrophages, Mo-AMs),对疾病的进程产生重要的影响。这些亚型巨噬细胞在肺损伤和肺再生的进程中发挥着不同的作用。本文就肺部巨噬细胞的类型及其在肺损伤以及肺再生过程中的作用做简要的综述。

  • 1 肺部巨噬细胞分型

  • 肺由肺实质和肺间质组成,前者包括支气管树和肺泡等结构,后者包括血管、淋巴管和淋巴结、神经以及结缔组织等。其中肺泡是呼吸系统气体交换的关键性功能单位,其上皮细胞包括1型肺泡上皮细胞(Type1 Alveolar Epithelial Cells,AT1/AEC1) 和2型肺泡上皮细胞(type2 Alveolar Epithelial Cells, AT2/AEC2);AEC1 细胞呈扁平状,约占肺泡表面积的95%,并与内皮毛细血管丛紧密排列,形成薄的气体扩散界面。AEC2细胞呈立方状,可产生肺表面活性剂,降低表面张力,防止呼吸时肺泡塌陷。肺泡巨噬细胞位于肺泡内的气液界面,是稳态条件下肺泡内主要的免疫细胞,其通常黏附于AT1 细胞的腔侧面或与其并行排列,是呼吸树的第一个哨兵。肺泡巨噬细胞与外界直接接触,负责识别和清除侵入肺部的各种病原微生物或有害物质[5]。而肺间质巨噬细胞位于肺间质内,不与外界直接接触,其在维持组织稳态和介导对于自身抗原的耐受方面发挥重要的作用[5]。从来源上讲,AMs是由胎肝单核细胞分化而来,具有寿命长、能自我更新等特点[6]。而肺间质巨噬细胞的来源尚有争议,目前认为其一部分来源于胚胎卵黄囊,与肺泡巨噬细胞具有类似的自我更新的能力,而另一部分则来源于循环中的单核细胞,处于动态轮替的过程[6]

  • 在病理状态下,如肺部存在剧烈的炎症反应,循环中的单核细胞可被各种趋化因子招募至肺部,并进入肺泡内分化为巨噬细胞,参与疾病的进程,这种巨噬细胞被称为单核细胞来源的Mo-AMs[7]

  • 2 肺部巨噬细胞与炎症反应

  • 各种病原微生物侵入机体导致的严重感染是急性肺损伤发病的首要因素。以肺内感染导致的急性肺损伤为例,致病微生物入侵肺部后,其表面的病原体相关分子模式 (Pathogen-Associated Molecular Patterns,PAMP) 可被肺部驻留的巨噬细胞 (如 AMs 和 IMs) 通过模型识别受体 (如 TLR4) 识别,后者进一步激活核转录因子 (Nuclear Transcription Factor-κB,NF-κB) 等信号通路,启动多种促炎细胞因子 (如 TNF-α、IL-6、 IL-1β 等) 的转录和合成[8]。这些细胞因子分泌后可进一步招募循环中的单核细胞和中性粒细胞迁移至肺部,后者通过产生一氧化氮和中性粒细胞胞外陷阱等起到杀伤和清除病原微生物的作用。因此,一定程度的炎症反应是机体对于各种感染的重要防御机制,有助于机体免受因外来致病微生物入侵而导致的损伤。但是,此炎症反应如得不到体内外抗炎因素的有效抑制,或者致病微生物不能及时被清除而诱发机体持续性免疫应答,肺泡巨噬细胞因发生细胞焦亡而逐渐消失,而自循环中招募的单核细胞肺内外可形成级联、瀑布样细胞因子风暴而造成肺泡上皮细胞和毛细血管内皮细胞的损伤,进而导致毛细血管渗漏以及弥漫性肺间质和肺泡水肿,最终造成患者发生难治性的低氧血症,严重者可造成死亡[9]。因此,肺部不同亚型巨噬细胞在炎症反应的不同阶段先后参与了疾病的发生、发展,其介导的炎症反应水平决定了肺损伤的程度,并对之后的肺再生有重要的影响。

  • 3 肺部巨噬细胞与损伤修复

  • 在炎症反应的后期阶段,肺部巨噬细胞的表型从促炎型逐渐转变为抗炎型,表达更多的 IL-10 和精氨酸酶 1 (Arginase-1) 等,促进炎症的消散和组织修复[1011]。通过调控巨噬细胞极化,使其向抗炎和修复状态转化,对于肺损伤后的组织修复与再生具有十分重要的意义。巨噬细胞表型转化涉及到肺内微环境中多种信号分子及通路,是一个十分复杂的过程。研究发现,肺内皮细胞可通过释放血管分泌因子 R-spondin3 促进肺间质巨噬细胞向抗炎型表型转化,其主要机制为 R-spondin3 与间质巨噬细胞中的具有抗炎和修复作用的受体 LGR4结合,进而激活 Wnt/β-catenin信号传导,诱导抗炎标志物如 CD206、 CD301、 Arginase1 和 IL-10 的表达[12]。其中,IL-10 作为一种抗炎细胞因子,可以抑制急性炎症反应阶段促炎细胞因子 TNF-α、IL-6、IL-1β 等的生成,减轻炎症反应,而 Arginase-1通过增强精氨酸的代谢来促进组织修复。血管内皮条件性敲除 R-spondin3 则显著抑制了间质巨噬细胞表达各种抗炎因子,并增加了肺部炎症反应和损伤[12]。在此阶段,肺部巨噬细胞还通过分泌血小板源性生长因子 (Platelet-Derived Growth Factor,PDGF),血管内皮细胞生长因子 α (Vascular Endothelial Growth Factor α, VEGFα) 以及胰岛素样生长因子-1 (Insulin like Growth Factor,IGF-1) 来促进血管形成和细胞增殖[13]。此外,在急性炎症阶段上调的瞬时受体电位香草酸通道 4 (Transient Receptor Potential Vanilloid 4,TRPV4) 促进了巨噬细胞的吞噬能力,有利于炎症反应后期对于侵入肺部的中性粒细胞的清除,促进了炎症的消散[14]。相反,巨噬细胞凋亡抑制因子 (Apoptosis Inhibitor of Macrophage,AIM) 的上调抑制了巨噬细胞的吞噬能力,不利于炎症后期中性粒细胞的清除和炎症的消散[15]。但是,肺部不同亚型巨噬细胞在促进炎症消散、组织修复过程的作用尚不明确,有待于进一步的研究来揭示。

  • 4 肺部巨噬细胞与肺再生

  • 在肺损伤发生、发展过程中,炎症和理化等致损伤因素可激活肺上皮祖细胞或干细胞,后者快速增殖、分化来补充损伤的细胞,促进肺组织的再生。肺部巨噬细胞在此过程中发挥着关键的作用,在没有其他细胞类型参与的情况下,与巨噬细胞共培养可显著增加气管或 AEC2的增殖[16]。肺部巨噬细胞促进肺再生与 Wnt 通路的激活密切相关,在 AEC2 群中,有一种对 Wnt 敏感的肺泡上皮祖细胞,称为 Wnt 应答型肺泡上皮祖细胞 (Alveolar Epithelial Progenitor,AEP),作为远端肺的主要兼性祖细胞发挥作用。AEP具有独特的转录组、表观基因组和功能表型,并对Wnt信号通路有特异性反应,在损伤后可迅速增殖产生大量的 AEC2 和 AEC1 来促进功能性肺泡上皮再生[17]。研究表明,肺损伤后肺部巨噬细胞可以通过三叶因子家族 (Trefoil Factor Family 2,TFF2) 依赖的方式,增加与多种器官干细胞自我更新和分化密切相关的 Wnt 基因的表达来促进 AEC2 增殖[15]。髓系细胞条件性敲除 TFF2 可以显著降低 Wnt 基因 Wnt4 和 Wnt16 的表达,进而抑制上皮细胞的增殖[16]。但是,因髓系细胞特异性敲除模型同时影响了肺泡巨噬细胞和单核细胞分化的巨噬细胞中TFF2的表达,因此,尚不清楚哪种巨噬细胞亚型通过Wnt基因促进了肺泡上皮细胞增殖。

  • 一项研究通过使用基因编辑和过继细胞治疗等方法发现,CCL2/C-C motif轴是肺损伤进程中招募循环中单核细胞至肺泡内的关键信号通路。敲除 CCL2 可以显著减少进入肺部的单核细胞的数量,并抑制肺损伤后期的上皮细胞增殖,提示Mo-AMs 可能是促进肺再生的关键巨噬细胞亚群[18]。此外,在博来霉素诱导的肺纤维化模型中,Mo-AMs比肺泡巨噬细胞表达更高的促纤维趋化因子和生长因子,而通过敲除 CD11bhi 巨噬细胞中的 c-FLIP蛋白来清除Mo-AMs可减轻肺纤维化的程度。而另一项研究也显示,通过敲除单核细胞中的半胱氨酸蛋白酶 (Caspase-8) 来抑制单核细胞向肺泡巨噬细胞的转化,可以改善博来霉素和TGF-β诱导的肺纤维化[19]。这些研究均提示,来源于循环中的单核细胞及其分化的巨噬细胞可能是分泌生长因子和促进肺泡上皮细胞增殖的关键巨噬细胞亚群,也提示了肺部不同亚型巨噬细胞对于肺再生的不同作用。

  • 在肺再生过程中,自循环中招募的单核细胞可以分化成肺泡巨噬细胞,但是其特征与原有的 AMs 有着很大的不同,如何重建肺部天然免疫系统一直是一个难题。新近的研究发现,肺泡巨噬细胞可在体外长时间培养、扩增后回输体内[20],这为肺再生过程中 AMs 的重建提供了新的手段。尽管在培养过程中,AMs 表观遗传学和转录特征都发生了明显的改变,但是在回输体内后,这些改变可被逆转,通过体外扩增的 AMs 在回输至体内时仍保持着其特有的组织驻留巨噬细胞的特征,其转录特征能正常地发挥效用,这一发现为基于巨噬细胞的新型细胞疗法奠定了重要的基础[20]。此体外培养和过继治疗的方法也为肺再生提供了新的治疗策略,通过体外扩增 AMs,并通过基因工程改造来调控肺再生中的关键信号通路,之后再递送至患者的肺部有望为促进肺再生提供重要的新手段。

  • 5 总结与展望

  • 肺脏由于其独特的呼吸功能,极易受到外界各种有害因素的刺激而导致组织损伤。在肺损伤急性阶段,组织驻留的肺泡巨噬细胞以及至循环中招募的单核细胞通过促进炎症反应来清除病原微生物等有害物质,但是失控的炎症反应可以加重组织损伤,不利于之后的肺再生。在肺损伤后期,巨噬细胞向抗炎型分化,抑制炎症反应,并激活AEC2作为AEC1的祖细胞,自我更新并再生成熟,促进组织再生。在此过程中,至循环中招募的单核细胞可能是促进肺再生的关键细胞亚群。因此,在肺损伤的不同阶段,通过精细的干预不同亚型巨噬细胞的分化可能是抑制肺损伤、促进肺再生的重要手段。

  • 参考文献

    • [1] SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,et al.The aging lung:physiology,disease,and immunity [J].Cell,2021,184(8):1990-2019.

    • [2] BUTT Y,KURDOWSKA A,ALLEN T C,et al.Acute lung injury:a clinical and molecular review[J].Archives of Pathology and Laboratory Medicine,2016,140(4):345-350.

    • [3] BEERS M F,MORRISEY E E.The three R's of lung health and disease:repair,remodeling,and regeneration[J].The Journal of Clinical Investi,2011,121(6):2065-2073.

    • [4] WANSLEEBEN C,BARKAUSKAS C E,ROCK J R,et al.Stem cells of the adult lung:their development and role in homeostasis,regeneration,and disease[J].Wiley Interdisciplinary Reviews Developmental Biology,2013,2(1):131-148.

    • [5] AEGERTER H,LAMBRECHT B N,JAKUBZICK C V,et al.Biology of lung macrophages in health and disease [J].Immunity,2022,13,55(9):1564-1580.

    • [6] EVREN E,RINGQVIST E,WILLINGER T,et al.Origin and ontogeny of lung macrophages:from mice to humans [J].Immunology,2020,160(2):126-138.

    • [7] MOULD K J,BARTHEL L,MOHNING M P,et al.Cell origin dictates programming of resident versus recruited macrophages during acute lung injury[J].American Journal of Respiratory Cell and Molecular Biology,2017,57(3):294-306.

    • [8] DANG W P,TAO Y M,XU X X,et al.The role of lung macrophages in acute respiratory distress syndrome[J].Inflamm Res,2022,71:1417-1432.

    • [9] MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nature Reviews Disease Primers,2019,5(1):18.

    • [10] LUCAS R,CZIKORA I,SRIDHAR S,et al.Arginase 1:an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury[J].Frontiers In Immunology,2013,7(4):228.

    • [11] TANG L,ZHANG H,WANG C,et al.M2A and M2C macrophage subsets ameliorate inflammation and fibrop‐ roliferation in acute lung injury through interleukin 10 pathway[J].Shock,2017,48(1):119-129.

    • [12] ZHOU B,MAGANA L,HONG Z,et al.The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflam‐ matory injury[J].Nature Immunology,2020,21(11):1430-1443.

    • [13] CHENG P Y,LI S Y,CHENG H Y,et al.Macrophages in lung injury,repair,and fibrosis[J].Cells,2021,10(2):436.

    • [14] SCHERAGA R G,ABRAHAM S,NIESE K A,et al.TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis [J].The Journal of Immunology,2016,196(1):428-436.

    • [15] KIMURA H,SUZUKI M,KONNO S,et al.Orchestrating role of apoptosis inhibitor of macrophage in the resolution of acute lung injury[J].The Journal of Immunology,2017,199(11):3870-3882.

    • [16] HUNG L Y,SEN D,ONISKEY T K,et al.Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism[J].Mucosal Immunology,2019,12(1):64-76.

    • [17] ZACHARIAS W J,FRANK D B,ZEPP J A,et al.Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor[J].Nature,2018,555(7695):251-255.

    • [18] LECHNER A J,DRIVER I H,LEE J,et al.Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy[J].Cell Stem Cell,2017,21(1):120-134.

    • [19] MISHARIN A V,MORALES-NEBREDA L,REYFMAN P A,et al.Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span[J].Journal of Experimental Medicine,2017,214(8):2387-2404.

    • [20] SUBRAMANIAN S,BUSCH C J L,K MOLAWI K,et al.Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo [J].Nat Immunol,2022,23(3):458-468.

  • 参考文献

    • [1] SCHNEIDER J L,ROWE J H,GARCIA-DE-ALBA C,et al.The aging lung:physiology,disease,and immunity [J].Cell,2021,184(8):1990-2019.

    • [2] BUTT Y,KURDOWSKA A,ALLEN T C,et al.Acute lung injury:a clinical and molecular review[J].Archives of Pathology and Laboratory Medicine,2016,140(4):345-350.

    • [3] BEERS M F,MORRISEY E E.The three R's of lung health and disease:repair,remodeling,and regeneration[J].The Journal of Clinical Investi,2011,121(6):2065-2073.

    • [4] WANSLEEBEN C,BARKAUSKAS C E,ROCK J R,et al.Stem cells of the adult lung:their development and role in homeostasis,regeneration,and disease[J].Wiley Interdisciplinary Reviews Developmental Biology,2013,2(1):131-148.

    • [5] AEGERTER H,LAMBRECHT B N,JAKUBZICK C V,et al.Biology of lung macrophages in health and disease [J].Immunity,2022,13,55(9):1564-1580.

    • [6] EVREN E,RINGQVIST E,WILLINGER T,et al.Origin and ontogeny of lung macrophages:from mice to humans [J].Immunology,2020,160(2):126-138.

    • [7] MOULD K J,BARTHEL L,MOHNING M P,et al.Cell origin dictates programming of resident versus recruited macrophages during acute lung injury[J].American Journal of Respiratory Cell and Molecular Biology,2017,57(3):294-306.

    • [8] DANG W P,TAO Y M,XU X X,et al.The role of lung macrophages in acute respiratory distress syndrome[J].Inflamm Res,2022,71:1417-1432.

    • [9] MATTHAY M A,ZEMANS R L,ZIMMERMAN G A,et al.Acute respiratory distress syndrome[J].Nature Reviews Disease Primers,2019,5(1):18.

    • [10] LUCAS R,CZIKORA I,SRIDHAR S,et al.Arginase 1:an unexpected mediator of pulmonary capillary barrier dysfunction in models of acute lung injury[J].Frontiers In Immunology,2013,7(4):228.

    • [11] TANG L,ZHANG H,WANG C,et al.M2A and M2C macrophage subsets ameliorate inflammation and fibrop‐ roliferation in acute lung injury through interleukin 10 pathway[J].Shock,2017,48(1):119-129.

    • [12] ZHOU B,MAGANA L,HONG Z,et al.The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic-epigenetic reprogramming and resolves inflam‐ matory injury[J].Nature Immunology,2020,21(11):1430-1443.

    • [13] CHENG P Y,LI S Y,CHENG H Y,et al.Macrophages in lung injury,repair,and fibrosis[J].Cells,2021,10(2):436.

    • [14] SCHERAGA R G,ABRAHAM S,NIESE K A,et al.TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis [J].The Journal of Immunology,2016,196(1):428-436.

    • [15] KIMURA H,SUZUKI M,KONNO S,et al.Orchestrating role of apoptosis inhibitor of macrophage in the resolution of acute lung injury[J].The Journal of Immunology,2017,199(11):3870-3882.

    • [16] HUNG L Y,SEN D,ONISKEY T K,et al.Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism[J].Mucosal Immunology,2019,12(1):64-76.

    • [17] ZACHARIAS W J,FRANK D B,ZEPP J A,et al.Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor[J].Nature,2018,555(7695):251-255.

    • [18] LECHNER A J,DRIVER I H,LEE J,et al.Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy[J].Cell Stem Cell,2017,21(1):120-134.

    • [19] MISHARIN A V,MORALES-NEBREDA L,REYFMAN P A,et al.Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span[J].Journal of Experimental Medicine,2017,214(8):2387-2404.

    • [20] SUBRAMANIAN S,BUSCH C J L,K MOLAWI K,et al.Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo [J].Nat Immunol,2022,23(3):458-468.