en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

刘红美(1980-),女,河北石家庄人,副研究员,主要从事DNA损伤修复缺陷与神经发育和神经退行性疾病的内在关系,衰老与神经再生等研究。E-mail:liuhongmei@ioz.ac.cn

中图分类号:Q42,R363.2+1

文献标识码:A

文章编号:2096-8965(2023)02-0031-11

DOI:10.12287/j.issn.2096-8965.20230204

参考文献 1
LIEBER M R,MA Y,PANNICKE U,et al.Mechanism and regulation of human non-homologous DNA endjoining[J].Nat Rev Mol Cell Biol,2003,4(9):712-720.
参考文献 2
FRAPPART P O,MCKINNON P J.Mouse models of DNA double-strand break repair and neurological disease [J].DNA Repair(Amst),2008,7(7):1051-1060.
参考文献 3
MCKINNON P J.Maintaining genome stability in the nervous system[J].Nat Neurosci,2013,16(11):1523-1529.
参考文献 4
LINDAHL T.Instability and decay of the primary structure of DNA[J].Nature,1993,362(6422):709-715.
参考文献 5
PROVASEK V E,MITRA J,MALOJIRAO V H,et al.DNA double-strand breaks as pathogenic lesions in neurological disorders[J].Int J Mol Sci,2022,23(9):4653.
参考文献 6
ORTHWEIN A,NOORDERMEER S M,WILSON M D,et al.A mechanism for the suppression of homologous recombination in G1 cells[J].Nature,2015,528(7582):422-426.
参考文献 7
SHRIVASTAV M,DE HARO L P,NICKOLOFF J A.Regulation of DNA double-strand break repair pathway choice[J].Cell Res,2008,18(1):134-147.
参考文献 8
BELAN O,SEBALD M,ADAMOWICZ M,et al.POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells[J].Mol Cell,2022,82(24):4664-4680,e9.
参考文献 9
AHRABI S,SARKAR S,PFISTER S X,et al.A role for human homologous recombination factors in suppressing microhomology-mediated end joining[J].Nucleic Acids Res,2016,44(12):5743-5757.
参考文献 10
LIN F L,SPERLE K,STERNBERG N.Model for homologous recombination during transfer of DNA into mouse L cells:role for DNA ends in the recombination process[J].Mol Cell Biol,1984,4(6):1020-1034.
参考文献 11
LIU S,HUA Y,WANG J,et al.RNA polymerase Ⅲ is required for the repair of DNA double-strand breaks by homologous recombination[J].Cell,2021,184(5):1314-1329,e10.
参考文献 12
SONIAT M M,MYLER L R,KUO H C,et al.RPA phosphorylation inhibits DNA resection[J].Mol Cell,2019,75(1):145-153,e5.
参考文献 13
KWON Y,ROSNER H,ZHAO W,et al.DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation [J].Nat Commun,2023,14(1):432.
参考文献 14
HALDER S,SANCHEZ A,RANJHA L,et al.Doublestranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2[J].Mol Cell,2022,82(19):3553-3565,e5.
参考文献 15
ZHAO W,VAITHIYALINGAM S,SAN FILIPPO J,et al.Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry[J].Mol Cell,2015,59(2):176-187.
参考文献 16
KOWALCZYKOWSKI S C.An overview of the molecular mechanisms of recombinational DNA repair [J].Cold Spring Harb Perspect Biol,2015,7(11):a01640.
参考文献 17
LEE J H,PAULL T T.Cellular functions of the protein kinase ATM and their relevance to human disease[J].Nat Rev Mol Cell Biol,2021,22(12):796-814.
参考文献 18
MOTYCKA T A,BESSHO T,POST S M,et al.Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52[J].J Biol Chem,2004,279(14):13634-13639.
参考文献 19
BLASIAK J.Single-strand annealing in cancer[J].Int J Mol Sci,2021,22(4):2167.
参考文献 20
VU T V,DAS S,NGUYEN C C,et al.Single-strand annealing:molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing[J].Biotechnol J,2022,17(7):e2100413.
参考文献 21
BHARGAVA R,ONYANGO D O,STARK J M.Regulation of single-strand annealing and its role in genome maintenance[J].Trends Genet,2016,32(9):566-575.
参考文献 22
LYDEARD J R,JAIN S,YAMAGUCHI M,et al.Breakinduced replication and telomerase-independent telomere maintenance require Pol32[J].Nature,2007,448(7155):820-823.
参考文献 23
SAINI N,RAMAKRISHNAN S,ELANGO R,et al.Migrating bubble during break-induced replication drives conservative DNA synthesis[J].Nature,2013,502(7471):389-392.
参考文献 24
LIU L,MALKOVA A.Break-induced replication:unraveling each step[J].Trends Genet,2022,38(7):752-765.
参考文献 25
WU X,MALKOVA A.Break-induced replication mechanisms in yeast and mammals[J].Curr Opin Genet Dev,2021,71:163-170.
参考文献 26
ANAND R P,LOVETT S T,HABER J E.Break-induced DNA replication[J].Cold Spring Harb Perspect Biol,2013,5(12):a010397.
参考文献 27
MILANESE C,CERRI S,ULUSOY A,et al.Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease[J].Cell Death Dis,2018,9(8):818.
参考文献 28
AUDOYNAUD C,VAGNER S,LAMBERT S.Nonhomologous end-joining at challenged replication forks:an RNA connection?[J].Trends Genet,2021,37(11):973-985.
参考文献 29
SIGISMONDO G,ARSENI L,PALACIO-ESCAT N,et al.Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair[J].Nucleic Acids Res,2023,51(2):687-711.
参考文献 30
HNIZDA A,BLUNDELL T L.Multicomponent assemblies in DNA-double-strand break repair by NHEJ [J].Curr Opin Struct Biol,2019,55:154-160.
参考文献 31
STINSON B M,LOPARO J J.Repair of DNA doublestrand breaks by the nonhomologous end joining pathway [J].Annu Rev Biochem,2021,90:137-164.
参考文献 32
GHOSH D,RAGHAVAN S C.Nonhomologous end joining:new accessory factors fine tune the machinery[J].Trends Genet,2021,37(6):582-599.
参考文献 33
CHANG H H Y,PANNUNZIO N R,ADACHI N,et al.Non-homologous DNA end joining and alternative pathways to double-strand break repair[J].Nat Rev Mol Cell Biol,2017,18(8):495-506.
参考文献 34
LIEBER M R,LU H,GU J,et al.Flexibility in the order of action and in the enzymology of the nuclease,polymerases,and ligase of vertebrate non-homologous DNA end joining:relevance to cancer,aging,and the immune system[J].Cell Res,2008,18(1):125-133.
参考文献 35
CHEN S,LEE L,NAILA T,et al.Structural basis of longrange to short-range synaptic transition in NHEJ[J].Nature,2021,593(7858):294-298.
参考文献 36
OCHI T,BLACKFORD A N,COATES J,et al.DNA repair.PAXX,a paralog of XRCC4 and XLF,interacts with Ku to promote DNA double-strand break repair[J].Science,2015,347(6218):185-188.
参考文献 37
ARNOULT N,CORREIA A,MA J,et al.Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN[J].Nature,2017,549(7673):548-552.
参考文献 38
MITRA J,GUERRERO E N,HEGDE P M,et al.Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects[J].Proc Natl Acad Sci U S A,2019,116(10):4696-4705.
参考文献 39
KIM J,HUANG A Y,JOHNSON S L,et al.Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders [J].Nat Commun,2022,13(1):5918.
参考文献 40
CORNEO B,WENDLAND R L,DERIANO L,et al.Rag mutations reveal robust alternative end joining[J].Nature,2007,449(7161):483-486.
参考文献 41
DECOTTIGNIES A.Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination[J].Genetics,2007,176(3):1403-1415.
参考文献 42
MCVEY M,LEE S E.MMEJ repair of double-strand breaks(director's cut):deleted sequences and alternative endings[J].Trends Genet,2008,24(11):529-538.
参考文献 43
JIANG Y.Contribution of microhomology to genome instability:connection between dna repair and replication stress[J].Int J Mol Sci,2022,23(21):12937.
参考文献 44
SALLMYR A,TOMKINSON A E.Repair of DNA double-strand breaks by mammalian alternative endjoining pathways[J].J Biol Chem,2018,293(27):10536-10546.
参考文献 45
WEI L,NAKAJIMA S,BOHM S,et al.DNA damage during the G0/G1 phase triggers RNA-templated,Cockayne syndrome B-dependent homologous recombination[J].Proc Natl Acad Sci U S A,2015,112(27):E3495-E3504.
参考文献 46
FRANKENBERG-SCHWAGER M,BECKER M,GARG I,et al.The role of nonhomologous DNA end joining,conservative homologous recombination,and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2)in mammalian cells[J].Radiat Res,2008,170(6):784-793.
参考文献 47
DUTTA A,ECKELMANN B,ADHIKARI S,et al.Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex[J].Nucleic Acids Res,2017,45(5):2585-2599.
参考文献 48
ORⅡ K E,LEE Y,KONDO N,et al.Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development[J].Proc Natl Acad Sci U S A,2006,103(26):10017-10022.
参考文献 49
LEFEBVRE S,BURGLEN L,REBOULLET S,et al.Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell,1995,80(1):155-165.
参考文献 50
KOLB S J,KISSEL J T.Spinal muscular atrophy[J].Neurol Clin,2015,33(4):831-846.
参考文献 51
CUARTAS J,GANGWANI L.R-loop mediated DNA damage and impaired DNA repair in spinal muscular atrophy[J].Front Cell Neurosci,2022,16:826608.
参考文献 52
JANGI M,FLEET C,CULLEN P,et al.SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage[J].Proc Natl Acad Sci U S A,2017,114(12):E2347-E2356.
参考文献 53
KANNAN A,BHATIA K,BRANZEI D,et al.Combined deficiency of senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy[J].Nucleic Acids Res,2018,46(16):8326-8346.
参考文献 54
KANNAN A,JIANG X,HE L,et al.ZPR1 prevents Rloop accumulation,upregulates SMN2 expression and rescues spinal muscular atrophy[J].Brain,2020,143(1):69-93.
参考文献 55
LEE Y,MCKINNON P J.Responding to DNA double strand breaks in the nervous system[J].Neuroscience,2007,145(4):1365-1374.
参考文献 56
ALT F W,SCHWER B.DNA double-strand breaks as drivers of neural genomic change,function,and disease [J].DNA Repair(Amst),2018,71:158-163.
参考文献 57
WEI P C,CHANG A N,KAO J,et al.Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells[J].Cell,2016,164(4):644-655.
参考文献 58
MULLAART E,BOERRIGTER M E,RAVID R,et al.Increased levels of DNA breaks in cerebral cortex of Alzheimer's disease patients[J].Neurobiol Aging,1990,11(3):169-173.
参考文献 59
SHANBHAG N M,EVANS M D,MAO W,et al.Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease[J].Acta Neuropathol Commun,2019,7(1):77.
参考文献 60
THADATHIL N,DELOTTERIE D F,XIAO J,et al.DNA double-strand break accumulation in Alzheimer's disease:evidence from experimental models and postmortem human brains[J].Mol Neurobiol,2021,58(1):118-131.
参考文献 61
MA S,RONG Z,LIU C,et al.DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair[J].J Cell Biol,2021,220(2):e201911025.
参考文献 62
ASADA-UTSUGI M,UEMURA K,AYAKI T,et al.Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro[J].Commun Biol,2022,5(1):358.
参考文献 63
IONESCU-TUCKER A,COTMAN C W.Emerging roles of oxidative stress in brain aging and Alzheimer's disease [J].Neurobiol Aging,2021,107:86-95.
参考文献 64
CROKE M,NEUMANN M A,GROTSKY D A,et al.Differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells[J].Cell Cycle,2013,12(23):3629-3639.
参考文献 65
CHAPMAN J R,SOSSICK A J,BOULTON S J,et al.BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair [J].J Cell Sci,2012,125(Pt 15):3529-3534.
参考文献 66
BECKER J R,CLIFFORD G,BONNET C,et al.BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination[J].Nature,2021,596(7872):433-437.
参考文献 67
SUBERBIELLE E,DJUKIC B,EVANS M,et al.DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice[J].Nat Commun,2015,6:8897.
参考文献 68
MINOPOLI G,STANTE M,NAPOLITANO F,et al.Essential roles for Fe65,Alzheimer amyloid precursorbinding protein,in the cellular response to DNA damage [J].J Biol Chem,2007,282(2):831-835.
参考文献 69
STANTE M,MINOPOLI G,PASSARO F,et al.Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks[J].Proc Natl Acad Sci U S A,2009,106(13):5093-5098.
参考文献 70
ZHU L S,WANG D Q,CUI K,et al.Emerging Perspectives on DNA double-strand breaks in neurodegenerative diseases[J].Curr Neuropharmacol,2019,17(12):1146-1157.
参考文献 71
ZENG F,PARKER K,ZHAN Y,et al.Upregulated DNA damage-linked biomarkers in parkinson's disease model mice[J].ASN Neuro,2023,15:17590914231152099.
参考文献 72
DAVIDI D,SCHECHTER M,ELHADI S A,et al.alphaSynuclein translocates to the nucleus to activate retinoicacid-dependent gene transcription[J].iScience,2020,23(3):100910.
参考文献 73
PAN Y,ZONG Q,LI G,et al.Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons[J].Front Mol Neurosci,2022,15:1015881.
参考文献 74
CAMINS A,PIZARRO J G,ALVIRA D,et al.Activation of ataxia telangiectasia muted under experimental models and human Parkinson's disease[J].Cell Mol Life Sci,2010,67(22):3865-3882.
参考文献 75
QIN N,GENG A,XUE R.Activated or impaired:an overview of DNA repair in neurodegenerative diseases[J].Aging Dis,2022,13(4):987-1004.
参考文献 76
SCHASER A J,OSTERBERG V R,DENT S E,et al.Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for lewy body disorders[J].Sci Rep,2019,9(1):10919.
参考文献 77
YOON Y S,YOU J S,KIM T K,et al.Senescence and impaired DNA damage responses in alpha-synucleinopathy models[J].Exp Mol Med,2022,54(2):115-128.
参考文献 78
KAM T I,MAO X,PARK H,et al.Poly(ADP-ribose)drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease[J].Science,2018,362(6414):eaat8407.
参考文献 79
SHILOH Y,LEDERMAN H M.Ataxia-telangiectasia(AT):an emerging dimension of premature ageing[J].Ageing Res Rev,2017,33:76-88.
参考文献 80
TAYLOR A M,LAM Z,LAST J I,et al.Ataxia telangiectasia:more variation at clinical and cellular levels[J].Clin Genet,2015,87(3):199-208.
参考文献 81
BOURSEGUIN J,CHENG W,TALBOT E,et al.Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction[J].Nucleic Acids Res,2022,50(5):2700-2718.
参考文献 82
LEE J H,PAULL T T.Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species[J].Redox Biol,2020,32:101511.
参考文献 83
YU B,PAMPHLETT R.Environmental insults:critical triggers for amyotrophic lateral sclerosis[J].Transl Neurodegener,2017,6:15.
参考文献 84
KIERNAN M C,VUCIC S,CHEAH B C,et al.Amyotrophic lateral sclerosis[J].Lancet,2011,377(9769):942-955.
参考文献 85
RAGAGNIN A M G,SHADFAR S,VIDAL M,et al.Motor neuron susceptibility in ALS/FTD[J].Front Neurosci,2019,13:532.
参考文献 86
BUTTI Z,PAN Y E,GIACOMOTTO J,et al.Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish[J].Commun Biol,2021,4(1):792.
参考文献 87
GUERRERO E N,WANG H,MITRA J,et al.TDP-43/FUS in motor neuron disease:complexity and challenges [J].Prog Neurobiol,2016,145-146:78-97.
参考文献 88
PETERS O M,GHASEMI M,BROWN R H,JR.Emerging mechanisms of molecular pathology in ALS[J].J Clin Invest,2015,125(5):1767-1779.
参考文献 89
WANG H,KODAVATI M,BRITZ G W,et al.DNA damage and repair deficiency in ALS/FTD-associated neurodegeneration:from molecular mechanisms to therapeutic implication[J].Front Mol Neurosci,2021,14:784361.
参考文献 90
KONOPKA A,WHELAN D R,JAMALI M S,et al.Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations[J].Mol Neurodegener,2020,15(1):51.
参考文献 91
GONG J,HUANG M,WANG F,et al.RBM45 competes with HDAC1 for binding to FUS in response to DNA damage[J].Nucleic Acids Res,2017,45(22):12862-12876.
参考文献 92
GUPTA S,YOU P,SENGUPTA T,et al.Crosstalk between different DNA repair pathways contributes to neurodegenerative diseases[J].Biology(Basel),2021,10(2):163.
参考文献 93
DING Q,CHAPLIN J,MORRIS M J,et al.TDP-43 mutation affects stress granule dynamics in differentiated NSC-34 motoneuron-like cells[J].Front Cell Dev Biol,2021,9:611601.
参考文献 94
PEREGO M G L,TAIANA M,BRESOLIN N,et al.RLoops in motor neuron diseases [J].Mol Neurobiol,2019,56(4):2579-2589.
参考文献 95
NIEHRS C,LUKE B.Regulatory R-loops as facilitators of gene expression and genome stability[J].Nat Rev Mol Cell Biol,2020,21(3):167-178.
参考文献 96
SALVI J S,MEKHAIL K.R-loops highlight the nucleus in ALS[J].Nucleus,2015,6(1):23-29.
参考文献 97
FARG M A,KONOPKA A,SOO K Y,et al.The DNA damage response(DDR)is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis[J].Hum Mol Genet,2017,26(15):2882-2896.
参考文献 98
GRUNSEICH C,WANG I X,WATTS J A,et al.Senataxin mutation reveals how R-loops promote transcription by blocking dna methylation at gene promoters[J].Mol Cell,2018,69(3):426-437,e7.
参考文献 99
YUCE O,WEST S C.Senataxin,defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2,lies at the interface of transcription and the DNA damage response[J].Mol Cell Biol,2013,33(2):406-417.
参考文献 100
RINALDI C,PIZZUL P,LONGHESE M P,et al.Sensing R-loop-associated DNA damage to safeguard genome stability[J].Front Cell Dev Biol,2020,8:618157.
参考文献 101
RICHARD P,FENG S,TSAI Y L,et al.SETX(senataxin),the helicase mutated in AOA2 and ALS4,functions in autophagy regulation[J].Autophagy,2021,17(8):1889-1906.
参考文献 102
KANNAN A,CUARTAS J,GANGWANI P,et al.Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4[J].Brain,2022,145(9):3072-3094.
参考文献 103
POLLINA E A,GILLIAM D T,LANDAU A T,et al.A NPAS4-NuA4 complex couples synaptic activity to DNA repair[J].Nature,2023,614(7949):732-741.
参考文献 104
JIANG Y,DONG Y,LUO Y,et al.AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ[J].Cell Rep,2021,34(7):108713.
参考文献 105
RICHARDSON R B,MAILLOUX R J.Mitochondria need their sleep:redox,bioenergetics,and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling,uncoupling proteins,and substrate cycles[J].Antioxidants(Basel),2023,12(3):674.
参考文献 106
ZADA D,SELA Y,MATOSEVICH N,et al.Parp1 promotes sleep,which enhances DNA repair in neurons [J].Mol Cell,2021,81(24):4979-4993,e7.
参考文献 107
COULSON R L,MOURRAIN P,WANG G X.Sleep deficiency as a driver of cellular stress and damage in neurological disorders[J].Sleep Med Rev,2022,63:101616.
目录contents

    摘要

    DNA双链断裂修复 (DNA Double-Strand Break Repair,DSBR) 在保持神经元基因组稳定性和细胞存活方面发挥着重要作用。DSBR 主要通过同源重组 (Homologous Recombination,HR) 及非同源末端连接 (Non-Homologous End Joining,NHEJ) 来完成,这两种修复途径对于维持神经元的正常生理功能至关重要。另外,DSBR异常在多种神经退行性疾病中扮演重要角色,因此,深入剖析DSBR机制对于理解神经退行性疾病的病理发生及研发有效治疗手段具有重要意义。本文综述了常见的DSBR途径,并概述了DSBR异常与几种常见神经退行性疾病发病机制的最新研究进展。

    Abstract

    DNA double-strand break repair (DSBR) plays an important role in maintaining genome stability and cell survival. DSBR are predominately accomplished by two pathways: Homologous Recombination (HR) and Non-homologous End Joining (NHEJ), and both pathways are essential for the maintenance of physiological functions in neurons. Dysregulation of DSBR has been reported to be involved in multiple neurodegenerative diseases. Therefore, a deeper understanding of mechanisms in the DSBR will provide further insights into the pathogenesis of distinct neurodegenerative disease and help to develop effective therapeutics for these diseases. In this review, we provide a comprehensive overview of the common DSBR pathways, and summarize the latest involvement of DSBR in the pathogenic mechanisms of several common neurodegenerative diseases.

  • 0 引言

  • DNA 双链断裂 (DNA Double-Strand Break, DSB) 是一类严重的 DNA 损伤,可由病毒感染、电离辐射和化学药物等外源因素导致,也可由活性氧、拓扑异构酶以及染色体融合过程中受到的机械力等内源因素而引起。据统计,每个细胞每天会发生十次左右的DSB损伤[1]。因此,细胞需要多样且高效的 DNA 双链断裂修复 (DNA Double-Strand Break Repair,DSBR) 方式应对不同的DSB,以维持基因组的稳定性并预防疾病的发生。DSBR异常可以诱发基因组结构变异,并随细胞生长产生持续性累积效应[2-4],最终导致细胞凋亡甚至影响机体的发育及生理功能。在神经系统中,神经元基因组发生 DSB 往往会导致神经元功能损伤。例如,海马神经元功能损伤会导致记忆障碍、性格改变,而运动神经元退化会造成运动障碍、肌肉萎缩等病症。随着科学界对常见神经退行性疾病如阿尔兹海默症 (Alzheimer's Disease,AD)、帕金森病 (Parkinson's Disease,PD) 发生机制的研究,越来越多 DSBR 异常被发现与神经退行性疾病的发生密切相关。本文详细介绍了常见的 DSBR 途径,并重点介绍了 DSBR 缺陷与常见神经退行性疾病发生机制的关联,为未来神经退行性疾病潜在发生机制探究及临床治疗提供参考方向。

  • 1 DSBR

  • DSB主要通过两种典型途径进行修复:同源重组 (Homologous Recombination,HR) 及非同源末端连接 (Non-Homologous End Joining,NHEJ) [5]。这两种修复途径的选择主要取决于细胞所处的细胞周期节点。一般情况下,HR 在 S/ G2 期活跃[6]; NHEJ在整个细胞周期都有发生,但在 G1/G2 期更为活跃[57]。另外,尽管微同源末端介导的连接 (Microhomology-Mediated End Joining,MMEJ) 是发生在细胞中的一种较少见的机制,但该通路同样在 DSBR 中发挥重要作用[89]。MMEJ 活跃于细胞周期的S期和G2期,部分在G0/G1期出现。目前, MMEJ在其他修复途径中的作用尚不完全清楚,但被认为是 HR 和 NHEJ 缺陷细胞中的一种修复备份模式。这几种DSBR途径相互竞争也相互协调,共同维持基因组稳定。

  • 1.1 HR

  • HR 能够最大程度保证 DNA 序列的遗传稳定性,也是将脑内神经元维持在正常生理状态的关键,对于学习、记忆和其他认知功能维护至关重要[6]。HR 主要利用姐妹染色单体间的同源序列来实现细胞复制过程中无错误的损伤后修复[10]。DSB 发生后,断裂位点的 DNA 经过切除加工成为适合进行 DSBR 的单链 DNA (single-stranded DNA, ssDNA) 底物,具体加工过程包括: MRE11-RAD50-NBS1 (MRN) 复合物识别并结合 DSB,然后募集并激活共济失调毛细血管扩张突变蛋白 (Ataxia Telangiectasia Mutated protein,ATM)。激活的 ATM 磷酸化羧末端结合蛋白反应蛋白 (C-terminal-binding Protein Interacting Protein,CtIP),再与乳腺癌 1 型易感蛋白 (Breast Cancer Type1 Susceptibility Protein,BRCA1) 相互作用,形成 BRCA1/MRN/CtIP 复合体,促进 DNA 末端切除 (约 100 bp) [11],形成短的 3'ssDNA。随后,Bloom 综合症解旋酶 (Bloom's Syndrome Helicase, BLM)、核酸外切酶 1 (Exonuclease1,EXO1) 及 Dna2等 DNA外切酶对 ssDNA进行继续切割[12] 并产生一个长的 (约 1 kb) 3'ssDNA。ssDNA 结合蛋白复合物 RPA (Replication Protein A) 迅速结合到新生的 ssDNA 上并保护其不被降解。DNA 重组酶 RAD51和/或DNA减数分裂重组酶1 (DNA Meiotic Recombinase1,DMC1) 置换掉 RPA,与 ssDNA 形成核纤维丝 (蛋白-DNA 复合结构)。该结构可以寻找附近的同源姐妹染色单体配对,形成 ssDNA-RAD51-同源 DNA 复合体,并由 ATP 驱动促进同源链的入侵从而形成 D-loop结构[13-15]。入侵的同源链可作为模板进行 DNA 合成,生成的新链延伸形成 HR 的重要修复中间产物 dHJ (double Holiday Junctions) 结构。最后,dHJ结构可通过细胞内的DNA解旋酶解开或通过DNA内切酶切开生成同源重组修复产物[101617]

  • 二倍体生物中还存在其他依赖同源序列的DSB 修复方式,如单链退火 (Single-Strand Annealing, SSA) 和断裂诱导复制 (Break-Induced Replication, BIR)。相较于 HR,这两种修复方式仅需要较短的同源序列。SSA 依赖 DSB 末端剪切形成的 ssDNA 的微同源性促进重组过程与新链合成,最后末端加工连接修复 DSB。DNA 解旋酶和核酸酶联合作用切除两端DSB 5'末端并生成3'ssDNA悬垂。RPA结合 3'ssDNA 悬垂后,RAD52/RAD59/BLM/DSS1 复合物协助同源重复序列互补配对及退火。ERCC1-XPF 复合物作用于 3'ssDNA 末端进行酶切[18]。 RAD52与ssDNA结合,促进DNA聚合酶利用互补链模板合成DNA片段,最后DNA连接酶Ⅰ封闭缺口。这样的修复方式会导致 DSB 两侧其中一段同源序列及同源序列之间约 20 kb 的序列丢失,诱发基因组上出现同源重复序列间的删除重排等变异。当多个 DSB 发生在不同的染色体上时,SSA 可能导致更大范围内序列重排甚至染色体易位。但在实际应用中,SSA可以提高CRISPR/Cas9基因组编辑的功效,并减少其脱靶效应[19-21]

  • 复制叉结构崩塌会形成单端 DSB (One-ended DSB)。这类损伤会激活 BIR 途径,在 D 环中复制模板 DNA,实现新合成 DNA 的稳定遗传[22]。BIR 过程中,聚合酶δ以链侵袭中间体中的ssDNA为引物,启动 DNA 合成过程。Mph1 解旋酶则解开 D 环。解离的新合成 DNA 末端或被 RAD52/RAD59 退火到另一个 DSB 末端,间隙填补结束后进行合成依赖性链退火 (Synthesis-Dependent Strand Annealing,SDSA),或继续重新侵入同源模板。所以,BIR过程中前导链和滞后链的合成是不同步的,滞后链以新合成的前导链为模板进行复制,在染色体上形成一个迁移的复制泡 (Migrating Bubble[23]) 结构[24-27]。目前已知,BIR 在复制叉重启和端粒延长替代途径 (Alternative Lengthening of Telomeres) 中发挥重要作用,极大可能导致基因组高度不稳定性。

  • 1.2 NHEJ

  • 在不分裂的单倍体或者不处于 S/G2 期的二倍体细胞中,染色体附近没有同源序列供体,NHEJ 以更为灵活的方式发挥修复作用[128]。NHEJ 不需要 DNA 模板。DSB 发生后,MRN 复合物在 DSB 位点迅速聚集,促进 ATM 激酶磷酸化 H2A.X 以标记DSB位点。DNA损伤检查点蛋白1 (Mediator of DNA Damage Checkpoint 1,MDC1) 随后在 DSB 位点富集,招募下游信号分子,如TP53结合蛋白1 (P53 Binding Protein 1, 53BP1) 到 DSB 位点。 53BP1可与RAP1-相互作用因子1(RIF1)-Shieldin 复合物共同作用,保护断裂位点免受酶切。这一过程也使细胞倾向于选择 NHEJ 途径进行修复[29]。 NHEJ途径涉及多个关键因子的协同作用。Ku70/80 蛋白作为 NHEJ过程中的关键调节蛋白复合物能迅速结合DSB末端,防止断裂末端远离,随后DNA-PKcs和其他 NHEJ修复因子被 Ku70/80招募到 DSB 位点形成稳定的DNA-PK复合物。DNA-PKcs自磷酸化并激活 Artemis,活化后的 Artemis 具有 5'外切酶、内切酶、发夹型核酶等酶切活性,能够对DSB 处双链结构灵活切割,形成双链平末端或粘性末端,促进 NHEJ 修复。Pol X 家族聚合酶对末端进行填充,最后切口被 DNA 连接酶Ⅳ-XRCC4-XLF 复合物封闭连接[30-35]。另外,目前还发现 PAXX、 MRI 和 TAR DNA 结合蛋白 43 (TAR DNA-Binding Protein 43,TARDBP43) 等 NHEJ 相关新蛋白通过其他方式促进DSBR[36-38]。由此可见,在NHEJ过程中,只有形成完全互补的 ssDNA 才能实现准确的修复。但是在正常细胞代谢期间产生的 DSB 很少存在互补末端,NHEJ通常利用短 (四个或更少的核苷酸) 微同源序列退火,因此它的修复产物可能发生短片段 (1-4 nt) 插入/删除突变,甚至是染色体易位[39]

  • 1.3 MMEJ

  • MMEJ 是一种备用 DSBR 途径[40],常用于快速修复DSB损伤。与经典的NHEJ不同,MMEJ依赖于同源区域修复DSB。在NHEJ途径受损时,Pol Q 抑制 Rad51 与 DSB 位点结合, Ku70 / 80、 DNA-PKcs和DNA连接酶Ⅳ-XRCC4等与NHEJ相关的蛋白也无法正常结合DSB位点。这一过程促进DSBR 选择MMEJ途径进行修复。MMEJ的发生要求DSB 两端具有微同源性序列区域 (4~25 bp),并通过这段同源序列直接对断裂 DNA末端进行退火。MRN 复合物、CtIP在DSB处发挥5'-3'内切酶活性形成短片段 ssDNA,再由 BLM、Dna2 和 EXO1 切割形成长片段 ssDNA。新形成的 ssDNA 上微同源序列退火,结构特异性核酸内切酶 (如 XPF-ERCC1) 或 Flap 核酸内切酶 1 (FEN-1) 对末端未退火的 ssDNA 进行修剪,然后经聚合酶催化填补、由 DNA连接酶Ⅲ-XRCC1复合体封闭连接完成修复。 MMEJ过程中,Flap (游离的核酸末端) 的去除将会导致微同源序列间序列缺失[41-44]。这也使 MMEJ 具有高度诱变性,从而产生染色体异常。

  • 在 DSB 修复过程中,切除 DSB 末端后产生的3 'ssDNA突出部分是选择修复途径的重要结构。在 G1 期,Artemis 控制 DSB 末端切除范围[4546]。在 S 期和 G2 期,MRX/MRN 复合物、Sae2/CtIP、Exo1 和 Dna2 形成适用于 NHEJ 途径的切除长度。短距离切除有利于 MMEJ 途径的选择,较长的 ssDNA 末端则有利于SSA和HR途径的选择。启动SSA还需要根据 DSB 部位和同源序列之间的距离确定切除范围[47]

  • 图1 HR、NHEJ和MMEJ途径示意图

  • 2 DSB 修复缺陷在神经退行性疾病发生中的作用

  • 神经系统需要对 DNA 损伤进行快速修复以维持基因组稳定。在神经系统发育过程中,不同阶段需要的 DSB修复途径并不相同。HR在神经细胞增殖过程中发挥主要作用,而 NHEJ则在神经细胞分化过程至关重要[48]。因此,DSB修复缺陷而导致的病症普遍有明显的神经病理学特征。一个典型的例子是脊髓性肌萎缩症 (Spinal Muscular Atrophy, SMA)。运动神经元存活基因1 (SMN1) 基因突变导致 SMN 蛋白持续性低水平表达,并使 RNA / DNA解旋酶Senataxin (SETX) 功能缺失,进而导致R-环 (RNA-DNA杂交体) 和DSB增加。研究表明,SMN 水平低下还会导致 DNA-PKcs 缺陷,使 Artemis 无法被正常磷酸化,进而无法发挥其在 NHEJ 过程中的碱基切除功能。这将进一步导致 DSB积累和脊髓运动神经元的变性与退行,进而产生肌无力、肌萎缩等症状[49-52]。研究显示,恢复 SMN水平可以减轻SETX和DNA-PKcs功能缺陷以及SMA患者神经元中的DSB累积。同样,在SMA 神经元中过表达SETX可减少R-环的形成和DSB数量,并逆转神经变性现象[53-55]。类似的 DSB 与 DSBR之间的平衡在神经系统发生、发育不同阶段中均发挥关键作用,DSB 的积累以及复发性 DSB (在神经干细胞、成熟的非分裂神经元中反复出现的 DSB 簇) 都被认为是大脑老化、神经元退化的一个共同的潜在机制[395657]。以下将概述DSBR异常与神经退行性疾病发生相关的作用机制。

  • 2.1 AD

  • AD 是最常见的神经退行性疾病。AD 患者在临床上常表现出进行性记忆丧失和认知障碍的病理特征,细胞外 β-淀粉样蛋白斑块 (Amyloid β-protein,Aβ) 和过度磷酸化Tau蛋白聚集导致的细胞内神经原纤维缠结被认为是 AD 的两大病理特征[58]。研究表明,在 AD 早期阶段,AD 患者海马区域中的 DSB 便开始积累,DNA 修复功能逐渐降低。用依托泊苷处理原代小鼠皮质神经元诱导 DSB,可导致非磷酸化 Tau与微管蛋白同时在核周积累,随后上调磷酸化Tau蛋白的表达。免疫组织化学的方法显示在AD患者皮层中存在DSB和磷酸化 Tau 共定位现象。因此,DSB 被认为是 AD 相关神经变性及神经退行的重要诱因,严重影响神经元的染色质稳定性及正常生理功能[5960]。作为微管蛋白的组成成分,Tau 可维持神经元微管系统稳定,参与调节神经细胞的生长发育。正常生理条件下, DNA 损伤会促进中心体复制以及细胞骨架蛋白(如微管) 延伸,加速断裂DNA末端的运动使断裂处能够相遇并结合,以调节 NHEJ修复,这一过程被称为 DSB 诱导的微管动力学应激反应 (DSB-Induced Microtubule Dynamics Stress Response, DMSR) [61]。Tau 蛋白很可能通过参与微管结构的重排以协助 NHEJ 发生。因此,过度的 DNA 损伤可能导致磷酸化Tau蛋白在细胞中积累,形成神经原纤维缠结,进一步加剧染色质不稳定性并导致神经元退化[62],这或许能够解释阿尔兹海默症患者之间发病程度以及寿命的差异性。

  • 除了高水平的氧化应激和 DNA 损伤外,DNA 修复功能的缺陷也可能是 AD 的重要病因之一[63]。 BRCA1 和 53BP1 分别在 HR 和 NHEJ 途径选择性末端切除中发挥作用[6465]。BRCA1 和 53BP1 都依赖 RNF168 (Ring Finger Protein 168) 催化产生的 H2A 泛素化信号被招募到 DSB 位点。但是除了结合该泛素化信号外,BRCA1-BRAD1复合体还可结合 H4K20me0,而 53BP1 更倾向于结合 H4K20me2[66]。这两种甲基化状态分别存在于 S 期和G1期。因此,BRCA1和53BP1在DSB处的结合具有时间特异性,实现 HR 与 NHEJ 在细胞周期有序发挥修复作用。在AD患者脑中,BRCA1启动子区域的低甲基化导致 BRCA1 的表达上调,且伴随着 BRCA1 错误定位到胞质。在这种情况下, BRCA1的上调使神经细胞能够承受的 DDR阈值升高,但由于 BRCA1 功能仍然异常,并以高度不溶的形式与 Tau共同聚集,使其无法参与 DNA修复。 Aβ 的病理沉积也会抑制神经元中的 BRCA1 表达,导致DSB修复功能降低并引发AD相关的认知功能缺陷[67]。同样也有观点认为,BRCA1 能够引起早老素1 (Presenilin 1,PS1) 异常泛素化和亚细胞分布改变并诱导促凋亡信号传导,从而参与 AD的发生。与 Tau 类似的是, Aβ 淀粉样前体蛋白 (Amyloid Precursor Protein,APP) 及其结合伴侣 Fe65也直接参与 DNA修复过程。Fe65或 APP耗竭会导致Tip60-TRRAP复合物在DSB处的招募减少,降低H4乙酰化水平及DNA修复效率[6869]。在有丝分裂细胞中的研究还表明,BRCA1对维持NHEJ保真度很重要。但 BRCA1 如何在神经元的 DSBR 中发挥作用仍需要进一步研究[70]

  • 2.2 PD

  • PD 是仅次于 AD 的第二大神经退行性疾病,其病理特征是中脑黑质致密部中的多巴胺能神经元严重丢失及退化以及路易体的形成,导致患者运动能力失调以及震颤等表征[26]。目前普遍认为活性氧导致的 DNA 损伤是多巴胺能神经元变性缺失的主要原因。研究发现[71],PD 模型小鼠大脑中的 γ-H2AX蛋白水平显著增加。α-synuclein(α-syn)是 PD 和相关神经系统疾病发病机制中的一个关键因子。α-syn 在进入细胞核后能够改变 DNA 的构象,同时改变染色质组蛋白的乙酰化和磷酸化水平并影响转录过程,其过度核易位以及Ser129磷酸化都会导致较强的细胞毒性[72]。研究发现[7374],α-syn 的核定位会导致ATM、γH2AX和BRCA1表达上调,即 α-syn的核定位可以增加小鼠海马神经元的DNA损伤反应,并诱导神经细胞衰老基因的表达。此外,作为 DSBR 起始的重要调控因子,ATM 缺乏也将导致细胞 DSB 修复功能受损。缺乏 ATM 的转基因小鼠,其脑中多巴胺能神经元的数量同样减少。这些研究表明,α-syn错误核定位会引发ATM依赖的 DSB修复[75],DSB积累也会引发PD相关病理特征。同样意外的是,α-syn被发现直接与双链DNA结合并促进 NHEJ修复[76]。α-syn或 parkin的突变也会导致 DNA 修复缺陷,从而增加基因组的不稳定性[7778]。α-syn 与 DSBR 间的复杂机制仍然需要在 PD疾病模型中进行测试和验证。

  • 2.3 共济失调-毛细血管扩张症(AtaxiaTelangiectasia,A-T)

  • A-T 是由 ATM 基因隐性突变引起的神经退行性综合征,患者普遍具有神经退行性病变、易患肿瘤和早衰等临床表现[79]。现在普遍认为,ATM 缺失会造成神经元中 DNA 损伤的累积,并导致患者神经元电离辐射敏感性增强以及染色质的不稳定。 ATM 缺陷造成的修复障碍并不会直接影响中枢神经系统功能,但会导致神经元基因组不稳定,继而产生免疫缺陷、基因组突变等表征。

  • A-T患者典型的临床表征是进行性小脑共济失调,并逐渐发展为运动障碍。患者在患病初期往往表现为不受控制流口水及眼球震颤,并逐渐发展为肌肉萎缩甚至是呼吸肌无力[80]。浦肯野神经元是大脑中放电速率最高的神经元之一,也是小脑中唯一的传出神经元,在人体运动协调中发挥作用,而 A-T患者由于小脑皮层进行性退化,会导致浦肯野神经元和颗粒神经元变性[79]。A-T患者另一个常见病症——眼皮肤毛细血管扩张,被认为是由于淋巴细胞中 ATM 缺失引起患者免疫功能缺陷所导致。ATM 缺陷相关的 DNA 损伤还会通过非经典 NF-κB 通路介导小胶质细胞长时间激活。小胶质细胞对死亡细胞的清除缺陷以及对神经元突触过度吞噬会导致免疫途径相关的A-T型神经变性[81]。在非分裂神经元中,ATM 功能受损还会导致 DSB 在神经元中不断累积,诱发神经变性及神经元死亡[3982]。综上,ATM 激酶的多重调控机制及 A-T 发病机理仍有待进一步研究探索。

  • 2.4 肌萎缩侧索硬化症 (Amyotrophic Lateral Sclerosis,ALS)

  • ALS是一种进展快速的神经退行性疾病。患者上运动神经元和/或下运动神经元退化,使神经元控制能力失调,进而导致全身各处肌肉萎缩[83-85]C9orf72第一内含子内的GGGGCC六核苷酸重复扩增是 ALS 最常见的遗传原因[86]。目前已发现 40 余个基因与 ALS 相关。家族性和散发性 ALS 病例中涉及较多的基因突变,包括:TAR DNA 结合蛋白 (TARDBP)、 C72ORF1C9ORF72SETX、共济失调素 2 (ATXN2)、TANK 结合激酶 1 (TBK1)、 MATR3SOD1 和人 RNA 结合蛋白 FUS [8788] 等。其中 TARDBP 和 FUS 蛋白在 DSB 修复过程中发挥作用。

  • FUS 和 TDP-43 主要定位于神经元的细胞核,并可穿梭于细胞核和细胞质之间。其中,TDP-43 是非同源序列 DSB 启动 NHEJ 修复的一个关键因子,它可被招募到 DSB 位点,并作为 XRCC4-XLF-DNA 连接酶Ⅳ复合物的支架发挥作用。在 ALS/FTD 神经细胞中,TDP-43 核定位序列发生突变导致 TDP-43 在胞质中大量聚集,其结合蛋白也表现为胞质错误定位,形成细胞质聚集体,丧失其参与 DSB 修复的功能[89]。LIG4 的错误胞质定位会使 DSB 处缺口封闭能力明显降低,导致细胞对 DNA损伤性药物以及UV损伤的敏感性增加。敲低 TDP-43 降低 NHEJ 修复效率,导致基因组 DSB 累积明显增加[38]。在体外使用NU7441(特异性DNA-PK 抑制剂) 诱导 NHEJ 修复效率降低,也会导致 TDP-43 核定位能力下降[90]。另外,我们实验室的研究显示,FUS 可与 ALS 相关的另一种 RNA 结合蛋白——RBM45 相互作用,且 DNA 损伤后 FUS-RBM45互作显著增强。DNA损伤后,RBM45可正向调节 HR 和 NHEJ 通路,反向调节去乙酰化蛋白 HDAC1 的招募,并与 HDAC1 竞争性地结合 FUS,通过阻止 HDAC1在损伤位点的过度招募促进 DSB损伤后的修复。同时,我们还发现,ALS病理性突变 FUS-521C 增强了与 RBM45 的互作,导致 FUSR-521C 在体内与 HDAC1 相互作用显著减弱,造成了DNA损伤后HDAC1招募到损伤位点能力的减弱和 NHEJ 修复效率的降低。由于 NHEJ 是终末分化的神经元修复DSB的首要途径,所以HDAC1招募异常可导致 ALS 受累神经元 DNA 损伤的累积和退行性病变,提示通过解除 FUS 突变体与 RBM45 的病理性互作有望恢复DSB的修复功能[91]。研究还显示[9293],FUS 和 TDP-43 的核内缺失都会导致神经元胞内基因组稳定性降低,功能退化甚至是死亡。

  • 转录过程中,新生 mRNA 与模板 DNA 链杂交并形成短暂的 RNA-DNA 三链杂交结构,即 R 环。 R 环结构中持续存在的 ssDNA 会启动 DNA 损伤修复相关程序,诱导胞嘧啶向尿嘧啶核苷的转化[94],导致非复制细胞及转录活跃细胞的基因组不稳定性。R环还可以通过形成复制停滞和复制叉崩溃诱发 DSB,并通过阻碍 RBP 结合到新生 RNA 上抑制 DSBR 进程[95]。最近来自遗传模型的研究显示不同 ALS相关因子与 R环调控密切相关[96]。由于 R环主要发生在富含 GC 的转录位点, C9orf72 的 GGGGCC 重复扩增很有可能导致这种异常 DNA/ RNA 杂交体的积累[97]C9orf72 的异常表达会产生 RNA 重复结构以及毒性重复二肽蛋白,导致 C9orf72调节突触囊泡释放和肌肉运动的功能受损,造成运动神经元功能缺陷及肌肉萎缩[8698]。另一个将R环形成与ALS关联起来的研究来源于酵母基因 Sen1SETX是酵母Sen1的人类同源物。作为多种 DNA过程所需的 RNA/DNA解旋酶,SETX能够有效解开在转录位点产生的 R 环。SETX 还能够与 RNA聚合酶Ⅱ相互作用,调节转录终止[99]。另一方面,R环的存在能够抑制SETX核酸酶活性。SETX 基因过表达使 R-环数量急剧降低,导致启动子甲基化和基因沉默,造成幼年型肌萎缩侧索硬化症 (Juvenile Amyotrophic Lateral Sclerosis,ALS4) [98],而SETX基因表达量降低会导致共济失调伴动眼神经失用症 2 型 (Ataxia Oculomotor Apraxia type2, AOA2) [100101]。另外,SETX 与其上游蛋白 ZPR1 (Zinc Finger Protein 1) 形成的复合物被认为是调节 R环形成以及维持运动神经元正常功能的一个重要靶点[102]

  • 综上,DSBR 相关基因的突变、DSBR 相关因子在胞内的错误定位及功能缺失,均可导致神经元基因组不稳定及神经元退化。不同大脑分区神经元损伤造成患者对应分区的生理功能受损及缺失,形成临床上多种神经退行性相关生理病症。由于不同神经性退行性疾病的病因十分复杂,涉及了多种易感基因和环境因素,其中的详细机制仍有待进一步探索。

  • 3 展望

  • DNA 损伤修复机制在维持基因组稳定性、细胞正常生理功能以及生物体稳态等各个方面发挥着重要作用。但是在实际生理环境中,DSB修复与神经退行性疾病的发生往往不能区分出明确的因果关系。神经元中重要基因突变导致神经退行性疾病的发生,造成 DSB 修复功能下降甚至缺失。DSB 的累积又进一步导致神经元退化,使患者出现肢体动作不便、脑功能受损等症状。越来越多DSBR相关机制的发现将有助于研发更多针对神经退行性疾病的潜在治疗策略。例如,研究表明,大脑神经元中还存在特有表达的NPAS4-NuA4复合物,通过结合基因调控元件、诱导招募额外的 DSB 修复机制避免年龄依赖性的体细胞突变积累[103]。AMPK 能够在 DSB 处磷酸化 53BP1,促进 DDR 过程中 53BP1 的招募,实现高效的 NHEJ,以维持基因组稳定性[104]。从维持线粒体稳态到调控细胞基础代谢, AMPK几乎参与细胞内所有生理活动。因此,这一发现建立了能量代谢与 DNA 损伤修复之间的新关联,提示代谢途径相关激酶及关键蛋白也许是提高 DSBR效率的新靶点。另外,神经退行性疾病患者常伴有睡眠障碍、体温降低、代谢速率降低等病症,而睡眠作为重要的生理活动也被认为与DSBR 有关。Richardson 等[105] 最新提出的“氧化还原-生物能学-温度和线粒体/细胞核的差异性调控假说 (Redox-Bioenergetics-Temperature and Differential Mitochondrial-Nuclear Regulatory Hypothesis) ”将氧化还原、能量代谢、体温调节等关键生理过程与昼夜节律联系起来。该假说以线粒体能量代谢为核心,分析异常生理过程导致的氧化应激及 DNA 损伤如何导致细胞衰老、代谢异常和神经系统疾病产生。Zada等[106107] 研究发现,斑马鱼长期激活的神经元内 DNA 损伤增多,且需要的睡眠时间更长。在睡眠期间,神经元内 Rad52 和 Ku80 活性增加。这种增强活性能够持续到苏醒后,从而实现 DSB损伤的持续性修复。深度剖析其中的机制或许能够建立昼夜节律/睡眠周期与 DSBR 之间的新关联,为预防神经退行性疾病提供新的思路。毋庸置疑的是,新的DSBR相关机制的发现将会不断拓宽抑制神经退行的研究方向,为预防及治疗神经退行性疾病提供新的转机。

  • 参考文献

    • [1] LIEBER M R,MA Y,PANNICKE U,et al.Mechanism and regulation of human non-homologous DNA endjoining[J].Nat Rev Mol Cell Biol,2003,4(9):712-720.

    • [2] FRAPPART P O,MCKINNON P J.Mouse models of DNA double-strand break repair and neurological disease [J].DNA Repair(Amst),2008,7(7):1051-1060.

    • [3] MCKINNON P J.Maintaining genome stability in the nervous system[J].Nat Neurosci,2013,16(11):1523-1529.

    • [4] LINDAHL T.Instability and decay of the primary structure of DNA[J].Nature,1993,362(6422):709-715.

    • [5] PROVASEK V E,MITRA J,MALOJIRAO V H,et al.DNA double-strand breaks as pathogenic lesions in neurological disorders[J].Int J Mol Sci,2022,23(9):4653.

    • [6] ORTHWEIN A,NOORDERMEER S M,WILSON M D,et al.A mechanism for the suppression of homologous recombination in G1 cells[J].Nature,2015,528(7582):422-426.

    • [7] SHRIVASTAV M,DE HARO L P,NICKOLOFF J A.Regulation of DNA double-strand break repair pathway choice[J].Cell Res,2008,18(1):134-147.

    • [8] BELAN O,SEBALD M,ADAMOWICZ M,et al.POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells[J].Mol Cell,2022,82(24):4664-4680,e9.

    • [9] AHRABI S,SARKAR S,PFISTER S X,et al.A role for human homologous recombination factors in suppressing microhomology-mediated end joining[J].Nucleic Acids Res,2016,44(12):5743-5757.

    • [10] LIN F L,SPERLE K,STERNBERG N.Model for homologous recombination during transfer of DNA into mouse L cells:role for DNA ends in the recombination process[J].Mol Cell Biol,1984,4(6):1020-1034.

    • [11] LIU S,HUA Y,WANG J,et al.RNA polymerase Ⅲ is required for the repair of DNA double-strand breaks by homologous recombination[J].Cell,2021,184(5):1314-1329,e10.

    • [12] SONIAT M M,MYLER L R,KUO H C,et al.RPA phosphorylation inhibits DNA resection[J].Mol Cell,2019,75(1):145-153,e5.

    • [13] KWON Y,ROSNER H,ZHAO W,et al.DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation [J].Nat Commun,2023,14(1):432.

    • [14] HALDER S,SANCHEZ A,RANJHA L,et al.Doublestranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2[J].Mol Cell,2022,82(19):3553-3565,e5.

    • [15] ZHAO W,VAITHIYALINGAM S,SAN FILIPPO J,et al.Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry[J].Mol Cell,2015,59(2):176-187.

    • [16] KOWALCZYKOWSKI S C.An overview of the molecular mechanisms of recombinational DNA repair [J].Cold Spring Harb Perspect Biol,2015,7(11):a01640.

    • [17] LEE J H,PAULL T T.Cellular functions of the protein kinase ATM and their relevance to human disease[J].Nat Rev Mol Cell Biol,2021,22(12):796-814.

    • [18] MOTYCKA T A,BESSHO T,POST S M,et al.Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52[J].J Biol Chem,2004,279(14):13634-13639.

    • [19] BLASIAK J.Single-strand annealing in cancer[J].Int J Mol Sci,2021,22(4):2167.

    • [20] VU T V,DAS S,NGUYEN C C,et al.Single-strand annealing:molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing[J].Biotechnol J,2022,17(7):e2100413.

    • [21] BHARGAVA R,ONYANGO D O,STARK J M.Regulation of single-strand annealing and its role in genome maintenance[J].Trends Genet,2016,32(9):566-575.

    • [22] LYDEARD J R,JAIN S,YAMAGUCHI M,et al.Breakinduced replication and telomerase-independent telomere maintenance require Pol32[J].Nature,2007,448(7155):820-823.

    • [23] SAINI N,RAMAKRISHNAN S,ELANGO R,et al.Migrating bubble during break-induced replication drives conservative DNA synthesis[J].Nature,2013,502(7471):389-392.

    • [24] LIU L,MALKOVA A.Break-induced replication:unraveling each step[J].Trends Genet,2022,38(7):752-765.

    • [25] WU X,MALKOVA A.Break-induced replication mechanisms in yeast and mammals[J].Curr Opin Genet Dev,2021,71:163-170.

    • [26] ANAND R P,LOVETT S T,HABER J E.Break-induced DNA replication[J].Cold Spring Harb Perspect Biol,2013,5(12):a010397.

    • [27] MILANESE C,CERRI S,ULUSOY A,et al.Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease[J].Cell Death Dis,2018,9(8):818.

    • [28] AUDOYNAUD C,VAGNER S,LAMBERT S.Nonhomologous end-joining at challenged replication forks:an RNA connection?[J].Trends Genet,2021,37(11):973-985.

    • [29] SIGISMONDO G,ARSENI L,PALACIO-ESCAT N,et al.Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair[J].Nucleic Acids Res,2023,51(2):687-711.

    • [30] HNIZDA A,BLUNDELL T L.Multicomponent assemblies in DNA-double-strand break repair by NHEJ [J].Curr Opin Struct Biol,2019,55:154-160.

    • [31] STINSON B M,LOPARO J J.Repair of DNA doublestrand breaks by the nonhomologous end joining pathway [J].Annu Rev Biochem,2021,90:137-164.

    • [32] GHOSH D,RAGHAVAN S C.Nonhomologous end joining:new accessory factors fine tune the machinery[J].Trends Genet,2021,37(6):582-599.

    • [33] CHANG H H Y,PANNUNZIO N R,ADACHI N,et al.Non-homologous DNA end joining and alternative pathways to double-strand break repair[J].Nat Rev Mol Cell Biol,2017,18(8):495-506.

    • [34] LIEBER M R,LU H,GU J,et al.Flexibility in the order of action and in the enzymology of the nuclease,polymerases,and ligase of vertebrate non-homologous DNA end joining:relevance to cancer,aging,and the immune system[J].Cell Res,2008,18(1):125-133.

    • [35] CHEN S,LEE L,NAILA T,et al.Structural basis of longrange to short-range synaptic transition in NHEJ[J].Nature,2021,593(7858):294-298.

    • [36] OCHI T,BLACKFORD A N,COATES J,et al.DNA repair.PAXX,a paralog of XRCC4 and XLF,interacts with Ku to promote DNA double-strand break repair[J].Science,2015,347(6218):185-188.

    • [37] ARNOULT N,CORREIA A,MA J,et al.Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN[J].Nature,2017,549(7673):548-552.

    • [38] MITRA J,GUERRERO E N,HEGDE P M,et al.Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects[J].Proc Natl Acad Sci U S A,2019,116(10):4696-4705.

    • [39] KIM J,HUANG A Y,JOHNSON S L,et al.Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders [J].Nat Commun,2022,13(1):5918.

    • [40] CORNEO B,WENDLAND R L,DERIANO L,et al.Rag mutations reveal robust alternative end joining[J].Nature,2007,449(7161):483-486.

    • [41] DECOTTIGNIES A.Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination[J].Genetics,2007,176(3):1403-1415.

    • [42] MCVEY M,LEE S E.MMEJ repair of double-strand breaks(director's cut):deleted sequences and alternative endings[J].Trends Genet,2008,24(11):529-538.

    • [43] JIANG Y.Contribution of microhomology to genome instability:connection between dna repair and replication stress[J].Int J Mol Sci,2022,23(21):12937.

    • [44] SALLMYR A,TOMKINSON A E.Repair of DNA double-strand breaks by mammalian alternative endjoining pathways[J].J Biol Chem,2018,293(27):10536-10546.

    • [45] WEI L,NAKAJIMA S,BOHM S,et al.DNA damage during the G0/G1 phase triggers RNA-templated,Cockayne syndrome B-dependent homologous recombination[J].Proc Natl Acad Sci U S A,2015,112(27):E3495-E3504.

    • [46] FRANKENBERG-SCHWAGER M,BECKER M,GARG I,et al.The role of nonhomologous DNA end joining,conservative homologous recombination,and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2)in mammalian cells[J].Radiat Res,2008,170(6):784-793.

    • [47] DUTTA A,ECKELMANN B,ADHIKARI S,et al.Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex[J].Nucleic Acids Res,2017,45(5):2585-2599.

    • [48] ORⅡ K E,LEE Y,KONDO N,et al.Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development[J].Proc Natl Acad Sci U S A,2006,103(26):10017-10022.

    • [49] LEFEBVRE S,BURGLEN L,REBOULLET S,et al.Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell,1995,80(1):155-165.

    • [50] KOLB S J,KISSEL J T.Spinal muscular atrophy[J].Neurol Clin,2015,33(4):831-846.

    • [51] CUARTAS J,GANGWANI L.R-loop mediated DNA damage and impaired DNA repair in spinal muscular atrophy[J].Front Cell Neurosci,2022,16:826608.

    • [52] JANGI M,FLEET C,CULLEN P,et al.SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage[J].Proc Natl Acad Sci U S A,2017,114(12):E2347-E2356.

    • [53] KANNAN A,BHATIA K,BRANZEI D,et al.Combined deficiency of senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy[J].Nucleic Acids Res,2018,46(16):8326-8346.

    • [54] KANNAN A,JIANG X,HE L,et al.ZPR1 prevents Rloop accumulation,upregulates SMN2 expression and rescues spinal muscular atrophy[J].Brain,2020,143(1):69-93.

    • [55] LEE Y,MCKINNON P J.Responding to DNA double strand breaks in the nervous system[J].Neuroscience,2007,145(4):1365-1374.

    • [56] ALT F W,SCHWER B.DNA double-strand breaks as drivers of neural genomic change,function,and disease [J].DNA Repair(Amst),2018,71:158-163.

    • [57] WEI P C,CHANG A N,KAO J,et al.Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells[J].Cell,2016,164(4):644-655.

    • [58] MULLAART E,BOERRIGTER M E,RAVID R,et al.Increased levels of DNA breaks in cerebral cortex of Alzheimer's disease patients[J].Neurobiol Aging,1990,11(3):169-173.

    • [59] SHANBHAG N M,EVANS M D,MAO W,et al.Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease[J].Acta Neuropathol Commun,2019,7(1):77.

    • [60] THADATHIL N,DELOTTERIE D F,XIAO J,et al.DNA double-strand break accumulation in Alzheimer's disease:evidence from experimental models and postmortem human brains[J].Mol Neurobiol,2021,58(1):118-131.

    • [61] MA S,RONG Z,LIU C,et al.DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair[J].J Cell Biol,2021,220(2):e201911025.

    • [62] ASADA-UTSUGI M,UEMURA K,AYAKI T,et al.Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro[J].Commun Biol,2022,5(1):358.

    • [63] IONESCU-TUCKER A,COTMAN C W.Emerging roles of oxidative stress in brain aging and Alzheimer's disease [J].Neurobiol Aging,2021,107:86-95.

    • [64] CROKE M,NEUMANN M A,GROTSKY D A,et al.Differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells[J].Cell Cycle,2013,12(23):3629-3639.

    • [65] CHAPMAN J R,SOSSICK A J,BOULTON S J,et al.BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair [J].J Cell Sci,2012,125(Pt 15):3529-3534.

    • [66] BECKER J R,CLIFFORD G,BONNET C,et al.BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination[J].Nature,2021,596(7872):433-437.

    • [67] SUBERBIELLE E,DJUKIC B,EVANS M,et al.DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice[J].Nat Commun,2015,6:8897.

    • [68] MINOPOLI G,STANTE M,NAPOLITANO F,et al.Essential roles for Fe65,Alzheimer amyloid precursorbinding protein,in the cellular response to DNA damage [J].J Biol Chem,2007,282(2):831-835.

    • [69] STANTE M,MINOPOLI G,PASSARO F,et al.Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks[J].Proc Natl Acad Sci U S A,2009,106(13):5093-5098.

    • [70] ZHU L S,WANG D Q,CUI K,et al.Emerging Perspectives on DNA double-strand breaks in neurodegenerative diseases[J].Curr Neuropharmacol,2019,17(12):1146-1157.

    • [71] ZENG F,PARKER K,ZHAN Y,et al.Upregulated DNA damage-linked biomarkers in parkinson's disease model mice[J].ASN Neuro,2023,15:17590914231152099.

    • [72] DAVIDI D,SCHECHTER M,ELHADI S A,et al.alphaSynuclein translocates to the nucleus to activate retinoicacid-dependent gene transcription[J].iScience,2020,23(3):100910.

    • [73] PAN Y,ZONG Q,LI G,et al.Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons[J].Front Mol Neurosci,2022,15:1015881.

    • [74] CAMINS A,PIZARRO J G,ALVIRA D,et al.Activation of ataxia telangiectasia muted under experimental models and human Parkinson's disease[J].Cell Mol Life Sci,2010,67(22):3865-3882.

    • [75] QIN N,GENG A,XUE R.Activated or impaired:an overview of DNA repair in neurodegenerative diseases[J].Aging Dis,2022,13(4):987-1004.

    • [76] SCHASER A J,OSTERBERG V R,DENT S E,et al.Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for lewy body disorders[J].Sci Rep,2019,9(1):10919.

    • [77] YOON Y S,YOU J S,KIM T K,et al.Senescence and impaired DNA damage responses in alpha-synucleinopathy models[J].Exp Mol Med,2022,54(2):115-128.

    • [78] KAM T I,MAO X,PARK H,et al.Poly(ADP-ribose)drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease[J].Science,2018,362(6414):eaat8407.

    • [79] SHILOH Y,LEDERMAN H M.Ataxia-telangiectasia(AT):an emerging dimension of premature ageing[J].Ageing Res Rev,2017,33:76-88.

    • [80] TAYLOR A M,LAM Z,LAST J I,et al.Ataxia telangiectasia:more variation at clinical and cellular levels[J].Clin Genet,2015,87(3):199-208.

    • [81] BOURSEGUIN J,CHENG W,TALBOT E,et al.Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction[J].Nucleic Acids Res,2022,50(5):2700-2718.

    • [82] LEE J H,PAULL T T.Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species[J].Redox Biol,2020,32:101511.

    • [83] YU B,PAMPHLETT R.Environmental insults:critical triggers for amyotrophic lateral sclerosis[J].Transl Neurodegener,2017,6:15.

    • [84] KIERNAN M C,VUCIC S,CHEAH B C,et al.Amyotrophic lateral sclerosis[J].Lancet,2011,377(9769):942-955.

    • [85] RAGAGNIN A M G,SHADFAR S,VIDAL M,et al.Motor neuron susceptibility in ALS/FTD[J].Front Neurosci,2019,13:532.

    • [86] BUTTI Z,PAN Y E,GIACOMOTTO J,et al.Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish[J].Commun Biol,2021,4(1):792.

    • [87] GUERRERO E N,WANG H,MITRA J,et al.TDP-43/FUS in motor neuron disease:complexity and challenges [J].Prog Neurobiol,2016,145-146:78-97.

    • [88] PETERS O M,GHASEMI M,BROWN R H,JR.Emerging mechanisms of molecular pathology in ALS[J].J Clin Invest,2015,125(5):1767-1779.

    • [89] WANG H,KODAVATI M,BRITZ G W,et al.DNA damage and repair deficiency in ALS/FTD-associated neurodegeneration:from molecular mechanisms to therapeutic implication[J].Front Mol Neurosci,2021,14:784361.

    • [90] KONOPKA A,WHELAN D R,JAMALI M S,et al.Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations[J].Mol Neurodegener,2020,15(1):51.

    • [91] GONG J,HUANG M,WANG F,et al.RBM45 competes with HDAC1 for binding to FUS in response to DNA damage[J].Nucleic Acids Res,2017,45(22):12862-12876.

    • [92] GUPTA S,YOU P,SENGUPTA T,et al.Crosstalk between different DNA repair pathways contributes to neurodegenerative diseases[J].Biology(Basel),2021,10(2):163.

    • [93] DING Q,CHAPLIN J,MORRIS M J,et al.TDP-43 mutation affects stress granule dynamics in differentiated NSC-34 motoneuron-like cells[J].Front Cell Dev Biol,2021,9:611601.

    • [94] PEREGO M G L,TAIANA M,BRESOLIN N,et al.RLoops in motor neuron diseases [J].Mol Neurobiol,2019,56(4):2579-2589.

    • [95] NIEHRS C,LUKE B.Regulatory R-loops as facilitators of gene expression and genome stability[J].Nat Rev Mol Cell Biol,2020,21(3):167-178.

    • [96] SALVI J S,MEKHAIL K.R-loops highlight the nucleus in ALS[J].Nucleus,2015,6(1):23-29.

    • [97] FARG M A,KONOPKA A,SOO K Y,et al.The DNA damage response(DDR)is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis[J].Hum Mol Genet,2017,26(15):2882-2896.

    • [98] GRUNSEICH C,WANG I X,WATTS J A,et al.Senataxin mutation reveals how R-loops promote transcription by blocking dna methylation at gene promoters[J].Mol Cell,2018,69(3):426-437,e7.

    • [99] YUCE O,WEST S C.Senataxin,defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2,lies at the interface of transcription and the DNA damage response[J].Mol Cell Biol,2013,33(2):406-417.

    • [100] RINALDI C,PIZZUL P,LONGHESE M P,et al.Sensing R-loop-associated DNA damage to safeguard genome stability[J].Front Cell Dev Biol,2020,8:618157.

    • [101] RICHARD P,FENG S,TSAI Y L,et al.SETX(senataxin),the helicase mutated in AOA2 and ALS4,functions in autophagy regulation[J].Autophagy,2021,17(8):1889-1906.

    • [102] KANNAN A,CUARTAS J,GANGWANI P,et al.Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4[J].Brain,2022,145(9):3072-3094.

    • [103] POLLINA E A,GILLIAM D T,LANDAU A T,et al.A NPAS4-NuA4 complex couples synaptic activity to DNA repair[J].Nature,2023,614(7949):732-741.

    • [104] JIANG Y,DONG Y,LUO Y,et al.AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ[J].Cell Rep,2021,34(7):108713.

    • [105] RICHARDSON R B,MAILLOUX R J.Mitochondria need their sleep:redox,bioenergetics,and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling,uncoupling proteins,and substrate cycles[J].Antioxidants(Basel),2023,12(3):674.

    • [106] ZADA D,SELA Y,MATOSEVICH N,et al.Parp1 promotes sleep,which enhances DNA repair in neurons [J].Mol Cell,2021,81(24):4979-4993,e7.

    • [107] COULSON R L,MOURRAIN P,WANG G X.Sleep deficiency as a driver of cellular stress and damage in neurological disorders[J].Sleep Med Rev,2022,63:101616.

  • 参考文献

    • [1] LIEBER M R,MA Y,PANNICKE U,et al.Mechanism and regulation of human non-homologous DNA endjoining[J].Nat Rev Mol Cell Biol,2003,4(9):712-720.

    • [2] FRAPPART P O,MCKINNON P J.Mouse models of DNA double-strand break repair and neurological disease [J].DNA Repair(Amst),2008,7(7):1051-1060.

    • [3] MCKINNON P J.Maintaining genome stability in the nervous system[J].Nat Neurosci,2013,16(11):1523-1529.

    • [4] LINDAHL T.Instability and decay of the primary structure of DNA[J].Nature,1993,362(6422):709-715.

    • [5] PROVASEK V E,MITRA J,MALOJIRAO V H,et al.DNA double-strand breaks as pathogenic lesions in neurological disorders[J].Int J Mol Sci,2022,23(9):4653.

    • [6] ORTHWEIN A,NOORDERMEER S M,WILSON M D,et al.A mechanism for the suppression of homologous recombination in G1 cells[J].Nature,2015,528(7582):422-426.

    • [7] SHRIVASTAV M,DE HARO L P,NICKOLOFF J A.Regulation of DNA double-strand break repair pathway choice[J].Cell Res,2008,18(1):134-147.

    • [8] BELAN O,SEBALD M,ADAMOWICZ M,et al.POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells[J].Mol Cell,2022,82(24):4664-4680,e9.

    • [9] AHRABI S,SARKAR S,PFISTER S X,et al.A role for human homologous recombination factors in suppressing microhomology-mediated end joining[J].Nucleic Acids Res,2016,44(12):5743-5757.

    • [10] LIN F L,SPERLE K,STERNBERG N.Model for homologous recombination during transfer of DNA into mouse L cells:role for DNA ends in the recombination process[J].Mol Cell Biol,1984,4(6):1020-1034.

    • [11] LIU S,HUA Y,WANG J,et al.RNA polymerase Ⅲ is required for the repair of DNA double-strand breaks by homologous recombination[J].Cell,2021,184(5):1314-1329,e10.

    • [12] SONIAT M M,MYLER L R,KUO H C,et al.RPA phosphorylation inhibits DNA resection[J].Mol Cell,2019,75(1):145-153,e5.

    • [13] KWON Y,ROSNER H,ZHAO W,et al.DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation [J].Nat Commun,2023,14(1):432.

    • [14] HALDER S,SANCHEZ A,RANJHA L,et al.Doublestranded DNA binding function of RAD51 in DNA protection and its regulation by BRCA2[J].Mol Cell,2022,82(19):3553-3565,e5.

    • [15] ZHAO W,VAITHIYALINGAM S,SAN FILIPPO J,et al.Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry[J].Mol Cell,2015,59(2):176-187.

    • [16] KOWALCZYKOWSKI S C.An overview of the molecular mechanisms of recombinational DNA repair [J].Cold Spring Harb Perspect Biol,2015,7(11):a01640.

    • [17] LEE J H,PAULL T T.Cellular functions of the protein kinase ATM and their relevance to human disease[J].Nat Rev Mol Cell Biol,2021,22(12):796-814.

    • [18] MOTYCKA T A,BESSHO T,POST S M,et al.Physical and functional interaction between the XPF/ERCC1 endonuclease and hRad52[J].J Biol Chem,2004,279(14):13634-13639.

    • [19] BLASIAK J.Single-strand annealing in cancer[J].Int J Mol Sci,2021,22(4):2167.

    • [20] VU T V,DAS S,NGUYEN C C,et al.Single-strand annealing:molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing[J].Biotechnol J,2022,17(7):e2100413.

    • [21] BHARGAVA R,ONYANGO D O,STARK J M.Regulation of single-strand annealing and its role in genome maintenance[J].Trends Genet,2016,32(9):566-575.

    • [22] LYDEARD J R,JAIN S,YAMAGUCHI M,et al.Breakinduced replication and telomerase-independent telomere maintenance require Pol32[J].Nature,2007,448(7155):820-823.

    • [23] SAINI N,RAMAKRISHNAN S,ELANGO R,et al.Migrating bubble during break-induced replication drives conservative DNA synthesis[J].Nature,2013,502(7471):389-392.

    • [24] LIU L,MALKOVA A.Break-induced replication:unraveling each step[J].Trends Genet,2022,38(7):752-765.

    • [25] WU X,MALKOVA A.Break-induced replication mechanisms in yeast and mammals[J].Curr Opin Genet Dev,2021,71:163-170.

    • [26] ANAND R P,LOVETT S T,HABER J E.Break-induced DNA replication[J].Cold Spring Harb Perspect Biol,2013,5(12):a010397.

    • [27] MILANESE C,CERRI S,ULUSOY A,et al.Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease[J].Cell Death Dis,2018,9(8):818.

    • [28] AUDOYNAUD C,VAGNER S,LAMBERT S.Nonhomologous end-joining at challenged replication forks:an RNA connection?[J].Trends Genet,2021,37(11):973-985.

    • [29] SIGISMONDO G,ARSENI L,PALACIO-ESCAT N,et al.Multi-layered chromatin proteomics identifies cell vulnerabilities in DNA repair[J].Nucleic Acids Res,2023,51(2):687-711.

    • [30] HNIZDA A,BLUNDELL T L.Multicomponent assemblies in DNA-double-strand break repair by NHEJ [J].Curr Opin Struct Biol,2019,55:154-160.

    • [31] STINSON B M,LOPARO J J.Repair of DNA doublestrand breaks by the nonhomologous end joining pathway [J].Annu Rev Biochem,2021,90:137-164.

    • [32] GHOSH D,RAGHAVAN S C.Nonhomologous end joining:new accessory factors fine tune the machinery[J].Trends Genet,2021,37(6):582-599.

    • [33] CHANG H H Y,PANNUNZIO N R,ADACHI N,et al.Non-homologous DNA end joining and alternative pathways to double-strand break repair[J].Nat Rev Mol Cell Biol,2017,18(8):495-506.

    • [34] LIEBER M R,LU H,GU J,et al.Flexibility in the order of action and in the enzymology of the nuclease,polymerases,and ligase of vertebrate non-homologous DNA end joining:relevance to cancer,aging,and the immune system[J].Cell Res,2008,18(1):125-133.

    • [35] CHEN S,LEE L,NAILA T,et al.Structural basis of longrange to short-range synaptic transition in NHEJ[J].Nature,2021,593(7858):294-298.

    • [36] OCHI T,BLACKFORD A N,COATES J,et al.DNA repair.PAXX,a paralog of XRCC4 and XLF,interacts with Ku to promote DNA double-strand break repair[J].Science,2015,347(6218):185-188.

    • [37] ARNOULT N,CORREIA A,MA J,et al.Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN[J].Nature,2017,549(7673):548-552.

    • [38] MITRA J,GUERRERO E N,HEGDE P M,et al.Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects[J].Proc Natl Acad Sci U S A,2019,116(10):4696-4705.

    • [39] KIM J,HUANG A Y,JOHNSON S L,et al.Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders [J].Nat Commun,2022,13(1):5918.

    • [40] CORNEO B,WENDLAND R L,DERIANO L,et al.Rag mutations reveal robust alternative end joining[J].Nature,2007,449(7161):483-486.

    • [41] DECOTTIGNIES A.Microhomology-mediated end joining in fission yeast is repressed by pku70 and relies on genes involved in homologous recombination[J].Genetics,2007,176(3):1403-1415.

    • [42] MCVEY M,LEE S E.MMEJ repair of double-strand breaks(director's cut):deleted sequences and alternative endings[J].Trends Genet,2008,24(11):529-538.

    • [43] JIANG Y.Contribution of microhomology to genome instability:connection between dna repair and replication stress[J].Int J Mol Sci,2022,23(21):12937.

    • [44] SALLMYR A,TOMKINSON A E.Repair of DNA double-strand breaks by mammalian alternative endjoining pathways[J].J Biol Chem,2018,293(27):10536-10546.

    • [45] WEI L,NAKAJIMA S,BOHM S,et al.DNA damage during the G0/G1 phase triggers RNA-templated,Cockayne syndrome B-dependent homologous recombination[J].Proc Natl Acad Sci U S A,2015,112(27):E3495-E3504.

    • [46] FRANKENBERG-SCHWAGER M,BECKER M,GARG I,et al.The role of nonhomologous DNA end joining,conservative homologous recombination,and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2)in mammalian cells[J].Radiat Res,2008,170(6):784-793.

    • [47] DUTTA A,ECKELMANN B,ADHIKARI S,et al.Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex[J].Nucleic Acids Res,2017,45(5):2585-2599.

    • [48] ORⅡ K E,LEE Y,KONDO N,et al.Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development[J].Proc Natl Acad Sci U S A,2006,103(26):10017-10022.

    • [49] LEFEBVRE S,BURGLEN L,REBOULLET S,et al.Identification and characterization of a spinal muscular atrophy-determining gene[J].Cell,1995,80(1):155-165.

    • [50] KOLB S J,KISSEL J T.Spinal muscular atrophy[J].Neurol Clin,2015,33(4):831-846.

    • [51] CUARTAS J,GANGWANI L.R-loop mediated DNA damage and impaired DNA repair in spinal muscular atrophy[J].Front Cell Neurosci,2022,16:826608.

    • [52] JANGI M,FLEET C,CULLEN P,et al.SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage[J].Proc Natl Acad Sci U S A,2017,114(12):E2347-E2356.

    • [53] KANNAN A,BHATIA K,BRANZEI D,et al.Combined deficiency of senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy[J].Nucleic Acids Res,2018,46(16):8326-8346.

    • [54] KANNAN A,JIANG X,HE L,et al.ZPR1 prevents Rloop accumulation,upregulates SMN2 expression and rescues spinal muscular atrophy[J].Brain,2020,143(1):69-93.

    • [55] LEE Y,MCKINNON P J.Responding to DNA double strand breaks in the nervous system[J].Neuroscience,2007,145(4):1365-1374.

    • [56] ALT F W,SCHWER B.DNA double-strand breaks as drivers of neural genomic change,function,and disease [J].DNA Repair(Amst),2018,71:158-163.

    • [57] WEI P C,CHANG A N,KAO J,et al.Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells[J].Cell,2016,164(4):644-655.

    • [58] MULLAART E,BOERRIGTER M E,RAVID R,et al.Increased levels of DNA breaks in cerebral cortex of Alzheimer's disease patients[J].Neurobiol Aging,1990,11(3):169-173.

    • [59] SHANBHAG N M,EVANS M D,MAO W,et al.Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease[J].Acta Neuropathol Commun,2019,7(1):77.

    • [60] THADATHIL N,DELOTTERIE D F,XIAO J,et al.DNA double-strand break accumulation in Alzheimer's disease:evidence from experimental models and postmortem human brains[J].Mol Neurobiol,2021,58(1):118-131.

    • [61] MA S,RONG Z,LIU C,et al.DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair[J].J Cell Biol,2021,220(2):e201911025.

    • [62] ASADA-UTSUGI M,UEMURA K,AYAKI T,et al.Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro[J].Commun Biol,2022,5(1):358.

    • [63] IONESCU-TUCKER A,COTMAN C W.Emerging roles of oxidative stress in brain aging and Alzheimer's disease [J].Neurobiol Aging,2021,107:86-95.

    • [64] CROKE M,NEUMANN M A,GROTSKY D A,et al.Differences in 53BP1 and BRCA1 regulation between cycling and non-cycling cells[J].Cell Cycle,2013,12(23):3629-3639.

    • [65] CHAPMAN J R,SOSSICK A J,BOULTON S J,et al.BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair [J].J Cell Sci,2012,125(Pt 15):3529-3534.

    • [66] BECKER J R,CLIFFORD G,BONNET C,et al.BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination[J].Nature,2021,596(7872):433-437.

    • [67] SUBERBIELLE E,DJUKIC B,EVANS M,et al.DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice[J].Nat Commun,2015,6:8897.

    • [68] MINOPOLI G,STANTE M,NAPOLITANO F,et al.Essential roles for Fe65,Alzheimer amyloid precursorbinding protein,in the cellular response to DNA damage [J].J Biol Chem,2007,282(2):831-835.

    • [69] STANTE M,MINOPOLI G,PASSARO F,et al.Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks[J].Proc Natl Acad Sci U S A,2009,106(13):5093-5098.

    • [70] ZHU L S,WANG D Q,CUI K,et al.Emerging Perspectives on DNA double-strand breaks in neurodegenerative diseases[J].Curr Neuropharmacol,2019,17(12):1146-1157.

    • [71] ZENG F,PARKER K,ZHAN Y,et al.Upregulated DNA damage-linked biomarkers in parkinson's disease model mice[J].ASN Neuro,2023,15:17590914231152099.

    • [72] DAVIDI D,SCHECHTER M,ELHADI S A,et al.alphaSynuclein translocates to the nucleus to activate retinoicacid-dependent gene transcription[J].iScience,2020,23(3):100910.

    • [73] PAN Y,ZONG Q,LI G,et al.Nuclear localization of alpha-synuclein affects the cognitive and motor behavior of mice by inducing DNA damage and abnormal cell cycle of hippocampal neurons[J].Front Mol Neurosci,2022,15:1015881.

    • [74] CAMINS A,PIZARRO J G,ALVIRA D,et al.Activation of ataxia telangiectasia muted under experimental models and human Parkinson's disease[J].Cell Mol Life Sci,2010,67(22):3865-3882.

    • [75] QIN N,GENG A,XUE R.Activated or impaired:an overview of DNA repair in neurodegenerative diseases[J].Aging Dis,2022,13(4):987-1004.

    • [76] SCHASER A J,OSTERBERG V R,DENT S E,et al.Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for lewy body disorders[J].Sci Rep,2019,9(1):10919.

    • [77] YOON Y S,YOU J S,KIM T K,et al.Senescence and impaired DNA damage responses in alpha-synucleinopathy models[J].Exp Mol Med,2022,54(2):115-128.

    • [78] KAM T I,MAO X,PARK H,et al.Poly(ADP-ribose)drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease[J].Science,2018,362(6414):eaat8407.

    • [79] SHILOH Y,LEDERMAN H M.Ataxia-telangiectasia(AT):an emerging dimension of premature ageing[J].Ageing Res Rev,2017,33:76-88.

    • [80] TAYLOR A M,LAM Z,LAST J I,et al.Ataxia telangiectasia:more variation at clinical and cellular levels[J].Clin Genet,2015,87(3):199-208.

    • [81] BOURSEGUIN J,CHENG W,TALBOT E,et al.Persistent DNA damage associated with ATM kinase deficiency promotes microglial dysfunction[J].Nucleic Acids Res,2022,50(5):2700-2718.

    • [82] LEE J H,PAULL T T.Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species[J].Redox Biol,2020,32:101511.

    • [83] YU B,PAMPHLETT R.Environmental insults:critical triggers for amyotrophic lateral sclerosis[J].Transl Neurodegener,2017,6:15.

    • [84] KIERNAN M C,VUCIC S,CHEAH B C,et al.Amyotrophic lateral sclerosis[J].Lancet,2011,377(9769):942-955.

    • [85] RAGAGNIN A M G,SHADFAR S,VIDAL M,et al.Motor neuron susceptibility in ALS/FTD[J].Front Neurosci,2019,13:532.

    • [86] BUTTI Z,PAN Y E,GIACOMOTTO J,et al.Reduced C9orf72 function leads to defective synaptic vesicle release and neuromuscular dysfunction in zebrafish[J].Commun Biol,2021,4(1):792.

    • [87] GUERRERO E N,WANG H,MITRA J,et al.TDP-43/FUS in motor neuron disease:complexity and challenges [J].Prog Neurobiol,2016,145-146:78-97.

    • [88] PETERS O M,GHASEMI M,BROWN R H,JR.Emerging mechanisms of molecular pathology in ALS[J].J Clin Invest,2015,125(5):1767-1779.

    • [89] WANG H,KODAVATI M,BRITZ G W,et al.DNA damage and repair deficiency in ALS/FTD-associated neurodegeneration:from molecular mechanisms to therapeutic implication[J].Front Mol Neurosci,2021,14:784361.

    • [90] KONOPKA A,WHELAN D R,JAMALI M S,et al.Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations[J].Mol Neurodegener,2020,15(1):51.

    • [91] GONG J,HUANG M,WANG F,et al.RBM45 competes with HDAC1 for binding to FUS in response to DNA damage[J].Nucleic Acids Res,2017,45(22):12862-12876.

    • [92] GUPTA S,YOU P,SENGUPTA T,et al.Crosstalk between different DNA repair pathways contributes to neurodegenerative diseases[J].Biology(Basel),2021,10(2):163.

    • [93] DING Q,CHAPLIN J,MORRIS M J,et al.TDP-43 mutation affects stress granule dynamics in differentiated NSC-34 motoneuron-like cells[J].Front Cell Dev Biol,2021,9:611601.

    • [94] PEREGO M G L,TAIANA M,BRESOLIN N,et al.RLoops in motor neuron diseases [J].Mol Neurobiol,2019,56(4):2579-2589.

    • [95] NIEHRS C,LUKE B.Regulatory R-loops as facilitators of gene expression and genome stability[J].Nat Rev Mol Cell Biol,2020,21(3):167-178.

    • [96] SALVI J S,MEKHAIL K.R-loops highlight the nucleus in ALS[J].Nucleus,2015,6(1):23-29.

    • [97] FARG M A,KONOPKA A,SOO K Y,et al.The DNA damage response(DDR)is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis[J].Hum Mol Genet,2017,26(15):2882-2896.

    • [98] GRUNSEICH C,WANG I X,WATTS J A,et al.Senataxin mutation reveals how R-loops promote transcription by blocking dna methylation at gene promoters[J].Mol Cell,2018,69(3):426-437,e7.

    • [99] YUCE O,WEST S C.Senataxin,defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2,lies at the interface of transcription and the DNA damage response[J].Mol Cell Biol,2013,33(2):406-417.

    • [100] RINALDI C,PIZZUL P,LONGHESE M P,et al.Sensing R-loop-associated DNA damage to safeguard genome stability[J].Front Cell Dev Biol,2020,8:618157.

    • [101] RICHARD P,FENG S,TSAI Y L,et al.SETX(senataxin),the helicase mutated in AOA2 and ALS4,functions in autophagy regulation[J].Autophagy,2021,17(8):1889-1906.

    • [102] KANNAN A,CUARTAS J,GANGWANI P,et al.Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4[J].Brain,2022,145(9):3072-3094.

    • [103] POLLINA E A,GILLIAM D T,LANDAU A T,et al.A NPAS4-NuA4 complex couples synaptic activity to DNA repair[J].Nature,2023,614(7949):732-741.

    • [104] JIANG Y,DONG Y,LUO Y,et al.AMPK-mediated phosphorylation on 53BP1 promotes c-NHEJ[J].Cell Rep,2021,34(7):108713.

    • [105] RICHARDSON R B,MAILLOUX R J.Mitochondria need their sleep:redox,bioenergetics,and temperature regulation of circadian rhythms and the role of cysteine-mediated redox signaling,uncoupling proteins,and substrate cycles[J].Antioxidants(Basel),2023,12(3):674.

    • [106] ZADA D,SELA Y,MATOSEVICH N,et al.Parp1 promotes sleep,which enhances DNA repair in neurons [J].Mol Cell,2021,81(24):4979-4993,e7.

    • [107] COULSON R L,MOURRAIN P,WANG G X.Sleep deficiency as a driver of cellular stress and damage in neurological disorders[J].Sleep Med Rev,2022,63:101616.