en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王军志(1955-),男,湖南娄底人,中国工程院院士,主要从事生物制品质量控制研究。E-mail:wangjz@nifdc.org.cn;

武刚,付志浩为共同第一作者

中图分类号:R963,R979.1

文献标识码:A

文章编号:2096-8965(2021)04-0001-11

DOI:10.12287/j.issn.2096-8965.20210401

参考文献 1
LAMBERT J M,MORRIS C Q.Antibody-Drug Conjugates(ADCs)for personalized treatment of solid tumors:a review[J].Adv Ther,2017,34(5):1015-1035.
参考文献 2
SCHWARTZ R.Paul ehrlich's magic bullets[J].New England Journal of Med,2004,350(11):1079-1080.
参考文献 3
WINAU F,WESTPHAL O,WINAU R.Paul ehrlich-in search of the magic bullet[J].Microbes Infect 2004,6(8):786-789.
参考文献 4
STREBHARDT K,ULLRICH A.Paul ehrlich's magic bullet concept:100 years of progress[J].Nat Rev Cancer,2008,8(6):473-480.
参考文献 5
DEVITA V T,CHU E.A history of cancer chemotherapy [J].Cancer Res,2008,68(21):8643-8653.
参考文献 6
MATHE G,TRAN BA L O,BERNARD J.Effect on mouse leukemia 1210 of a combination by diazo-reaction of amethopterin and gamma-globulins from hamsters inoculated with such leukemia by heterografts[J].C R Hebd Seances Acad Sci,1958,246(10):1626-1628.
参考文献 7
GOLDENBERG D M,PRESTON D F,PRIMUS F J,et al.Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G[J].Cancer Res,1974,34(1):1-9.
参考文献 8
MOOLTEN F L,CAPPARELL N J,ZAJDEL S H,et al.Antitumor effects of antibody-diphtheria toxin conjugates.Ⅱ.Immunotherapy with conjugates directed against tumor antigens induced by simian virus 40[J].J Natl Cancer Inst,1975,55(2):473-477.
参考文献 9
GOLDENBERG D M,GAFFAR S A,BENNETT S J,et al.Experimental radioimmunotherapy of a xenografted human colonic tumor(GW-39)producing carcinoem-bryonic antigen[J].Cancer Res,1981,41(11 Pt 1):4354-4360.
参考文献 10
GHETIE M A,MAY R D,TILL M,et al.Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy[J].Cancer Res,1988,48(9):2610-2617.
参考文献 11
ELIAS D J,HIRSCHOWITZ L,KLINE L E,et al.Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma[J].Cancer Res,1990,50(13):4154-4159.
参考文献 12
WU A M,SENTER P D.Arming antibodies:prospects and challenges for immunoconjugates[J].Nat Biotechnol,2005,23(9):1137-1146.
参考文献 13
TRAIL P A,WILLNER D,LASCH S J,et al.Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates[J].Science,1993,261(5118):212-215.
参考文献 14
LIU J K.The history of monoclonal antibody development-progress,remaining challenges and future innovations[J].Ann Med Surg(Lond),2014,3(4):113-116.
参考文献 15
WALTS A E,SAID J W.Specific tumor markers in diagnostic cytology.Immunoperoxidase studies of carcinoembryonic antigen,lysozyme and other tissue antigens in effusions,washes and aspirates[J].Acta Cytologica,1983,27(4):408-416.
参考文献 16
WALKO C M,WEST H J.Antibody drug conjugates for cancer treatment[J].JAMA Oncol,2019,5(11):1648.
参考文献 17
NORSWORTHY K J,KO C W,LEE J E,et al.FDA approval summary:mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia[J].Oncologist,2018,23(9):1103-1108.
参考文献 18
SIEVERS E L,LINENBERGER M.Mylotarg:antibody-targeted chemotherapy comes of age[J].Current Opinion in Oncology,2001,13(6):522-527.
参考文献 19
GOLDENBERG D M,SHARKEY R M.Antibody-drug conjugates targeting TROP-2 and incorporating SN-38:a case study of anti-TROP-2 sacituzumab govitecan[J].MAbs,2019,11(6):987-995.
参考文献 20
SENTER P D,SIEVERS E L.The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma[J].Nat Biotechnol,2012,30(7):631-637.
参考文献 21
DERE R,YI J H,LEI C,et al.PK assays for antibody-drug conjugates:case study with ado-trastuzumab emtansine[J].Bioanalysis,2013,5(9):1025-1040.
参考文献 22
SYED Y Y.Sacituzumab govitecan:first approval[J].Drugs,2020,80(10):1019-1025.
参考文献 23
TAKEGAWA N,NONAGASE Y,YONESAKA K,et al.DS-8201a,a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor,overcomes HER2-positive gastric cancer T-DM1 resistance[J].Int J Cancer,2017,141(8):1682-1689.
参考文献 24
DAMELIN M,ZHONG W,MYERS J,et al.Evolving strategies for target selection for antibody-drug conjugates [J].Pharm Res,2015,32(11):3494-3507.
参考文献 25
TIPTON T R,ROGHANIAN A,OLDHAM R J,et al.Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies[J].Blood,2015,125(12):1901-1909.
参考文献 26
DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].British Journal of Cancer,2016,114(4):362-367.
参考文献 27
DONAGHY H.Effects of antibody,drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates[J].MAbs,2016,8(4):659-671.
参考文献 28
STROHL W R.Current progress in innovative engineered antibodies[J].Protein Cell,2018,9(1):86-120.
参考文献 29
KHONGORZUL P,LING C J,KHAN F U,et al.Antibody-drug conjugates:a comprehensive review[J].Mol Cancer Res,2020,18(1):3-19.
参考文献 30
DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].Br J Cancer,2016,114(4):362-367.
参考文献 31
PALUMBO A,HAULER F,DZIUNYCZ P,et al.A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels[J].Br J Cancer,2011,104(7):1106-1115.
参考文献 32
VISVADER J E,LINDEMAN G J.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer,2008,8(10):755-768.
参考文献 33
NEJADMOGHADDAM M R,MINAI-TEHRANI A,GHAHREMANZADEH R,et al.Antibody-drug conju-gates:possibilities and challenges[J].Avicenna J Med Biotechnol,2019,11(1):3-23.
参考文献 34
PANOWSKI S,BHAKTA S,RAAB H,et al.Site-specific antibody drug conjugates for cancer therapy[J].MAbs,2014,6(1):34-45.
参考文献 35
JIN Y,SCHLADETSCH M A,HUANG X,et al.Stepping forward in antibody-drug conjugate development[J].Pharmacol Ther,2021:107917.
参考文献 36
SCHLOM J,HAND P H,GREINER J W,et al.Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting[J].Cancer Res,1990,50(3 Suppl):820s-827s.
参考文献 37
PEGRAM M D,MILES D,TSUI C K,et al.HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors[J].Clin Cancer Res,2020,26(4):775-786.
参考文献 38
PRUSZYNSKI M,KOUMARIANOU E,VAIDYANATHAN G,et al.Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody[J].Nucl Med Biol,2013,40(1):52-59.
参考文献 39
FILNTISI A,VLACHAKIS D,MATSOPOULOS G K,et al.Computational construction of antibody-drug conjugates using surface lysines as the antibody conjugation site and a non-cleavable linker[J].Cancer Inform,2014,13:179-186.
参考文献 40
BECK A,D'ATRI V,EHKIRCH A,et al.Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates:present and future[J].Expert Rev Proteomics,2019,16(4):337-362.
参考文献 41
EXCOFFIER M,JANIN-BUSSAT M C,BEAULARVOR C,et al.A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species[J].J Chromatogr B Analyt Technol Biomed Life Sci,2016,1032:149-154.
参考文献 42
TSUCHIKAMA K,AN Z.Antibody-drug conjugates:recent advances in conjugation and linker chemistries[J].Protein Cell,2018,9(1):33-46.
参考文献 43
THORPE P E,WALLACE P M,KNOWLES P P,et al.New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo[J].Cancer Res,1987,47(22):5924-5931.
参考文献 44
YAO H,JIANG F,LU A,et al.Methods to design and synthesize antibody-drug conjugates(ADCs)[J].Int J Mol Sci,2016,17(2):194.
参考文献 45
MUELLER B M,WRASIDLO W A,REISFELD R A.Antibody conjugates with morpholinodoxorubicin and acid-cleavable linkers[J].Bioconjug Chem,1990,1(5):325-330.
参考文献 46
BARGH J D,ISIDRO-LLOBET A,PARKER J S,et al.Cleavable linkers in antibody-drug conjugates[J].Chem Soc Rev,2019,48(16):4361-4374.
参考文献 47
CHARI R V,MILLER M L,WIDDISON W C.Antibody-drug conjugates:an emerging concept in cancer therapy[J].Angew Chem Int Ed Engl,2014,53(15):3796-3827.
参考文献 48
TUMEY L N,HAN S.ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers[J].Curr Top Med Chem,2017,17(32):3444-3462.
参考文献 49
DAN N,SETUA S,KASHYAP V K,et al.Antibody-drug conjugates for cancer therapy:chemistry to clinical implications[J].Pharmaceuticals(Basel),2018,11(2):32.
参考文献 50
GIANOLIO D A,ROULEAU C,BAUTA W E,et al.Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab,novel antibody-drug conjugates[J].Cancer Chemother Pharmacol,2012,70(3):439-449.
参考文献 51
MCCOMBS J R,OWEN S C.Antibody drug conjugates:design and selection of linker,payload and conjugation chemistry[J].AAPS J,2015,17(2):339-351.
参考文献 52
GROMEK S M,BALUNAS M J.Natural products as exquisitely potent cytotoxic payloads for antibody-drug conjugates[J].Curr Top Med Chem,2015,14(24):2822-2834.
参考文献 53
CHEN H,LIN Z,ARNST K E,et al.Tubulin inhibitor-based antibody-drug conjugates for cancer therapy[J].Molecules,2017,22(8):1281.
参考文献 54
THEOCHAROPOULOS C,LIALIOS P P,GOGAS H,et al.An overview of antibody-drug conjugates in oncological practice[J].Ther Adv Med Oncol,2020,12:1-20.
参考文献 55
WAKANKAR A A,FEENEY M B,RIVERA J,et al.Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1:changes due to modification and conjugation processes[J].Bioconjug Chem,2010,21(9):1588-1595.
参考文献 56
STEPHAN J P,KOZAK K R,WONG W L.Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates[J].Bioanalysis,2011,3(6):677-700.
参考文献 57
WANG L,AMPHLETT G,BLÄTTLER W A,et al.Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate,huN901-DM1,by mass spectrometry[J].Protein Sci,2005,14(9):2436-2446.
参考文献 58
JUNUTULA JR,RAAB H,CLARK S,et al.Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index[J].Nat Biotechnol,2008,26(8):925-932.
参考文献 59
ZHOU Q.Site-specific antibody conjugation for ADC and beyond[J].Biomedicines,2017,5(4):64.
参考文献 60
AXUP J Y,BAJJURI K M,RITLAND M,et al.Synthesis of site-specific antibody-drug conjugates using unnatural amino acids[J].Proc Natl Acad Sci U S A,2012,109(40):16101-16106.
参考文献 61
QASBA P K.Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases[J].Bioconjug Chem,2015,26(11):2170-2175.
参考文献 62
ZHOU Q,STEFANO J E,MANNING C,et al.Site-specific antibody-drug conjugation through glycoengineering[J].Bioconjug Chem,2014,25(3):510-520.
参考文献 63
VAN GEEL R,WIJDEVEN M A,HEESBEEN R,et al.Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mabs provides homogeneous and highly efficacious antibody-drug conjugates[J].Bioconjug Chem,2015,26(11):2233-2242.
参考文献 64
STROP P,LIU S H,DORYWALSKA M,et al.Location matters:site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates[J].Chem Biol,2013,20(2):161-167.
参考文献 65
WU P,SHUI W,CARLSON B L,et al.Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag[J].Proc Natl Acad Sci U S A,2009,106(9):3000-3005.
目录contents

    摘要

    本文通过查阅文献和相关数据库,回顾抗体偶联药物的研究历程,并对抗体偶联药物的各个关键构成要素进行梳理。自 2000年第一个抗体偶联药物上市以来,全球已有 12种抗体偶联药物获批上市。国内已有 2个进口、1个国产抗体偶联药物获批上市。本文总结了近年抗体偶联药物的研究发展情况,综述了抗体偶联药物的抗原位点、连接子、细胞毒性载荷、偶联方式等各个组成要素,旨在提供当前抗体偶联药物较全面的信息,以促进该类药物未来的发展。

    Abstract

    Through referring to the literature and related databases, the research process of antibody-conjugated drugs was reviewed, and the key elements of ADC were summarized. Twelve ADCs have been approved worldwide, since the therapeutic ADC was marketed for the first time in 2000. There are two imported and one domestic ADCs approved to date in China. In this paper, the development of ADCs in recent years was summarized, and the key elements of ADCs such as antigenic site, linker, payload and conjugation mode were reviewed in order to provide comprehensive information of ADCs and promote their research and development in the future.

  • 抗体偶联药物 (Antibody-Drug Conjugate,ADC)是一种通过连接子将抗体与具有生物活性的小分子细胞毒性载荷连接起来的新型高效生物药物[1],结构示意图 (见图1)。其中抗体可高特异性靶向识别肿瘤抗原,静脉注射给药后,药物通过血液循环,分布到肿瘤组织并与肿瘤表面抗原结合。ADC与抗原的复合物经历内吞作用,将其携带的小分子细胞毒载荷内化到肿瘤细胞中,被转运到溶酶体以高效活性形式被释放,通过DNA损伤或抑制微管合成进而诱导癌细胞凋亡。与单一的抗体疗法相比,ADC因携带了小分子细胞毒性载荷,对肿瘤的杀伤效果更为显著;与传统治疗肿瘤的小分子化学药物相比,ADC具有精准靶向的特点,降低了小分子药物的脱靶毒性,具有更好的临床安全性。ADC将抗体药物的靶向特异性与小分子药物的细胞毒能力相结合达到对肿瘤细胞的高效杀伤作用从而实现肿瘤治疗的目的。

  • 图1 ADC结构示意图

  • ADC的制备始于靶抗原的选择,ADC的安全性和有效性在很大程度上依赖于靶抗原的选择以及和它的相互作用。然后针对靶抗原先行研制高度特异性的抗体,而后利用特定的可裂解或不可裂解的连接子片段,通过赖氨酸偶联、半胱氨酸偶联、定点偶联等方式将细胞毒性载荷与抗体连接起来。 ADC的制备常用途径有两种,即所谓的一步法和两步法。一步法是先将连接子和细胞毒性载荷连接起来再进行抗体偶联,二步法是先将连接子与抗体偶联再进行细胞毒性载荷的连接。ADC开发中的最大挑战之一是为抗体和细胞毒载荷选择适当的连接子及偶联模式,因为除了有效输送细胞毒载荷外,抗体-载荷连接系统的稳定性是决定ADC疗效和毒性的关键性因素,既要保证到达肿瘤细胞前在血液循环中不会提前断裂导致脱靶,毒性又要到达肿瘤细胞后高效释放细胞毒性载荷,是决定ADC治疗潜力的关键性因素。细胞毒性载荷是ADC最重要的核心构件,是最终执行杀伤肿瘤细胞 (直接杀伤或旁观者效应) 的活性成分,高毒力的载荷是使ADC发挥预期功效的关键。

  • 1 抗体偶联药物的概况

  • 1.1 抗体偶联药物的发展简史

  • 1908年,诺贝尔生理学或医学奖获得者保罗· 埃利希(Paul Ehrlich)首次引入了“magic bullet”这个词语。他设想如果一种物质有选择性的结合能力,它可能会通过与病原体的特异性结合而将靶向药物 (毒素) 递送到病原体从而达到灭杀病原体的效果,该理念可谓是ADC药物设计最早的思想源泉[2-4]。20世纪中期,临床医生和科学家就开始将小分子细胞毒性化学药物用于治疗晚期癌症患者[5]。从20世纪50年代后期开始,临床研究中开始出现偶联了载荷 (放射性核素、毒素或药物) 的多克隆或鼠单克隆抗体,从而不断努力推进这些抗体-药物偶联物的研究进展[6-12]。20世纪90年代,第一个基于嵌合人源化单克隆抗体的ADC应用于癌症模型研究[13]。以上这些早期靶向治疗的例子,促使精准开发靶向抗肿瘤药物成为可能[14]。随着越来越多的肿瘤标志物和肿瘤表面抗原的发现,为基于抗体的治疗方案提供了新靶点[15]。当抗体与小分子细胞毒性化学药物结合形成ADC后,抗体提供精准靶向定位,而毒性化学药物载荷提供对肿瘤细胞的高效杀伤作用[16]

  • 经过研究人员几十年的积累和努力,Mylotarg在2000年成为美国食品药品监督管理局 (Food and Drug Administration,FDA) 批准上市的第一种ADC,用于治疗复发型CD33阳性急性髓系白血病[17]。Mylotarg的上市具有里程碑的意义,开启了ADC治疗癌症的时代[18]。然而,Mylotarg在批准上市后的一项联合化疗临床研究中并没有显示出生存率的提高,反而出现比单独化疗更高的致命毒副反应率,这导致辉瑞公司 (Pfizer Inc.) 在2010年自愿从市场撤回该药物 (后基于新的临床数据,2017年重新获FDA批准上市)。第一代ADC (Mylotarg) 易引发机体的免疫反应,且药物载荷较低导致到达最大耐受剂量时疗效仍然非常有限[19]。此外,靶点抗原低表达导致药物递送至细胞内后,药物不足以杀死细胞,连接子不稳定导致药物毒性较大。上述这些因素都是第一代ADC失败的原因。随后从2001年到2010年的十年,ADC进入一个沉寂期,没有任何ADC获批上市。

  • Adcetris (2011年上市,批准用于治疗霍奇金淋巴瘤和系统性间变性大细胞淋巴瘤) 和Kadcyla (2013年上市,批准用于治疗转移性HER2阳性乳腺癌,首个针对实体瘤的ADC) 的获批标志着第二代ADC走向成熟。与第一代ADC相比,第二代ADC改善了肿瘤抗原的靶向性、毒素小分子的有效性、连接子的稳定性[20]。但大多数临床开发中的第二代ADC具有马来酰亚胺型连接子,这导致血清中可能发生所谓的去连接现象,产生脱靶细胞毒性,这促使科研人员开启新一代ADC的研发[21]

  • 得益于近年偶联药物相关技术的发展,第三代ADC通过新靶点、内化抗原、高毒性药物分子、专有连接子和高药物载荷实现了高精准度、高疗效、低毒性的治疗目的。2019年12月上市的Enhertu (DS8201a),采用了新的细胞毒性分子DXd,该分子具有更好的安全性和最佳的溶解度,用于治疗HER2阳性的胃及胃食管交界处腺癌。2020年4月上市的Trodelvy通过具有短聚乙二醇化单元的可裂解马来酰亚胺连接子与SN-38 (拓扑异构酶I抑制剂) 偶联的抗Trop-2人源化抗体类药物,用于难治或耐药三阴性乳腺癌[22]。Enhertu和Trodelvy平均药物抗体偶联比 (Drug to Antibody Ratio,DAR) 均超过了7.5,改变了长期以来认为DAR≈4为佳的传统认知[23]

  • 值得一提的是,2021年6月,荣昌生物的爱地希作为首个国产ADC获附条件批准,标志着我国ADC商业化进程正式开启。爱地希是通过缬氨酸-瓜氨酸连接子将抗人表皮生长因子受体2 (Human Epidermal Growth Factor Receptor2,HER2)抗体和细胞毒性单甲基Auristatin E (Monomethyl Auristatin E, MMAE)连接而成,适用于至少接受过2种系统化疗的HER2过表达局部晚期或转移性胃癌 (包括胃食管结合部腺癌) 患者的治疗。

  • 1.2 抗体偶联药物的获批上市情况

  • 自2000年首个ADC上市以来,截至目前共有12个ADC获批上市 (见表1),其中最近三年间 (截止到2021年9月) 获批的数量分别是3个、2个、3个,不到三年的时间获批的比例达到了二十年间获批上市ADC总数的2/3,ADC已进入了一个快速发展的时期。

  • 2 抗体偶联药物的关键要素

  • ADC由抗体、连接子和细胞毒性小分子药物组成,通过抗体与肿瘤细胞表面的特异性抗原结合,实现高活性的细胞毒药物对肿瘤细胞的精准杀伤。除了以上三个要素之外,靶抗原的选择和偶联方式对于所设计的ADC是否具有安全、有效的临床治疗效果也是极为重要的。

  • 2.1 抗体偶联药物的抗原靶点

  • 抗原靶点选择是ADC设计的起点,是系统中第一个应被重点考量的要素。抗原靶点的选择一般需要从以下几方面考虑:第一,靶抗原是否在肿瘤中高表达,而在健康细胞中无或低表达[24];第二,目标抗原是否在肿瘤细胞的细胞膜表面分布,因而才可以被特异性抗体所识别[25];第三,抗原是否不易脱落,以防止抗体与循环内的抗原结合[26];最后,目标抗原是否具有内化特性,这将有助于把ADC所偶联的毒素分子携带入肿瘤细胞内发挥作用,且靶抗原在ADC治疗后不应下调[27]

  • 目前已有超过50种抗原被作为ADC所识别的靶抗原[28]。实体肿瘤细胞过表达抗原如HER2、 EGFR、CD56、Trop2、CD70、Tissue factor、Colla⁃ gen IV等[26]。目前ADC应用较多的靶抗原包括Her2、 CD19、CD33、CD22、MSLN(mesothelin)等[29]

  • 对于靶抗原位点的选择,人们也开始探索其他一些设计策略,其中一项为靶向细胞基质及血管。在临床前和临床研究中有证据表明,新生血管的内皮细胞胞外基质和肿瘤基质的成分可能是有价值的靶抗原[30]。例如,纤维连接蛋白的外结构域B (Ex⁃ tradomain B,ED-B) 在侵袭性实体肿瘤的血管系统中高表达,可作为新生血管的生物标记物[31]。另外,肿瘤源细胞或肿瘤干细胞中的抗原也可能是有价值的靶抗原。肿瘤干细胞 (Tumor Stem Cells, TSCs) 是肿瘤细胞中具有侵袭性的亚群,并通过控制肿瘤细胞增殖、转移、复发等过程而对病程进展产生巨大影响[32]

  • 2.2 抗体偶联药物中的抗体 (Antibody)

  • 抗体是ADC设计中的另一个重要组成部分,其应能够特异性的识别肿瘤细胞的靶抗原并与靶抗原存在较高的亲和力,如缺乏高度特异性或与其他抗原发生交叉反应,都会发生不可预测的副作用。例如与健康组织相互作用导致靶外毒性,或在到达肿瘤部位前过早的从体内清除。同时,抗体还应具有免疫原性弱、半衰期长、血液循环稳定性好的特点[33]。抗体根据其重链恒定区序列可分为IgG、 IgA、IgD、IgE和IgM共五类,目前已批准的ADC均采用IgG类抗体,其中IgG1由于其分子量适中、亲和力高、半衰期长、制备简便且能发挥较强的Fc效应子功能等特点,在ADC抗体研发中应用最多。

  • 表1 截至2021年9月全球已上市的ADC

  • a Mylotarg于2000年首次获批上市,2010年撤回,并于2017年重新获批

  • ADC普遍采用人鼠嵌合抗体 (鼠源的轻重链可变区与人源的恒定区,如Adcetris) 与人源化抗体 (鼠源的CDR片段,其它序列均为人源,如Mylo⁃ targ和Kadcyla),这一定程度上降低了免疫原性,减少了人抗鼠抗体的产生[34]。但早期ADC仍存在一定程度的脱靶毒性、产品不均一、易聚集或快速被清除等问题,治疗窗口窄。

  • 抗体的特异性、亲和力以及内化率也是需要考虑的因素。高特异性有助于将毒素小分子集中递送至肿瘤部位,从而达到靶向的药理作用。特异性低的ADC更有可能对正常组织产生毒性[33]。ADC抗体应该具有较高的结合亲和力,大多数ADC的结合亲和力在0.1~1.0nM之间[35]。与小分子相比,抗体从血浆进入组织的速度更慢,而较快的内化效率可以提高ADC的药效[36]

  • ADC的抗体部分可以采用双特异性抗体或单域抗体等形式。双特异性抗体可针对同一靶抗原的两个不同表位,也可针对两个不同的靶抗原[37]。也有采用单域抗体偶联杀伤性放射性元素或毒性分子,用以开发新型ADC[38]

  • 2.3 抗体偶联药物中的连接子 (Linker)

  • 连接子是ADC的一个重要组成部分,它将抗体与有效载荷连接起来。连接子在血液中的稳定性非常重要,需要在血液中保持稳定以保持细胞毒性载荷附着在抗体上,但是一旦ADC进入肿瘤细胞或被运输到溶酶体,连接子应迅速分解以释放有效载荷[39]。连接子会影响ADC的许多重要特性,例如药物-抗体比值 (DAR)、有效载荷释放时间、治疗指数 (Therapeutic Index,TI) 和药代动力学/药效学[40]。早期ADC中使用的连接子稳定性有限,容易引起非特异性切割,从而诱发更广泛的药物释放和脱靶毒性,导致治疗指数和副作用与化疗相似[41, 42]。最新一代的不可切割连接子制备的ADC在体循环中更加稳定,完全依靠抗体内化后的溶酶体将抗体降解后释放细胞毒性小分子药物。由于其具有更优秀的血浆稳定性,显著降低了药物的脱靶毒性,提高了组织耐受性,提供了更宽的治疗窗口[43]。目前常用的连接子包括缬氨酸-瓜氨酸 (VC) 连接子、N-琥珀酰亚胺4-(2-吡啶基二硫基) 丁酸酯 (SPDB) 连接子、腙连接子、4-(N-马来酰亚胺甲基) 环己烷-1-羧酸琥珀酰亚胺 (SMCC) 连接子、马来酰亚胺己酰基 (MC) 连接子、N-琥珀酰亚胺基-4-(2-吡啶基二硫) 戊酸酯 (SPP) 连接子、硫醚连接子、四肽连接子和碳酸酯连接子[42, 44],常用连接子化学结构见表2。

  • 表2 常用ADC连接子的化学结构

  • 根据肿瘤细胞内连接子的切割特性,可将连接子大致分为可切割和不可切割两种类型。

  • 2.3.1 可切割连接子

  • 可切割的连接子可以通过多种机制进行裂解,包括腙键的酸不稳定裂解、二硫键的还原裂解和多肽键的酶解[45]。例如,酸不稳定连接在血液中通常是稳定的,但在低pH的溶酶体环境中(如Besponsa和Mylotarg) 会速裂解,释放出小分子毒素,发挥细胞杀伤作用。二硫键类型的则可通过细胞内谷胱甘肽 (Glutathione,GSH) 还原反应释放细胞毒载荷杀伤肿瘤细胞,并且其空间位阻作用可限制ADC在进入细胞之前的不成熟裂解。如果释放的细胞毒载荷能穿过肿瘤细胞膜,它们就能杀死附近的癌细胞,这就是所谓的“旁观者效应”[46]。但可切割连接子并非一定会产生旁观者效应,主要取决于释放载荷的膜穿透性和电荷特性。需要注意的是,旁观者效应也存在一些缺陷,如杀死目标肿瘤细胞附近的正常细胞或免疫细胞[47]。可切割连接子的另一个缺陷是在体内循环时可能存在一定程度的代谢降解,导致脱靶毒性[48]

  • 2.3.2 不可切割连接子

  • 不可切割的连接子由具有在血液中稳定的结构组成,含有该连接子的ADC只有在进入肿瘤细胞的溶酶体被蛋白酶降解后才会释放有效载荷[49]。稳定连接子大大降低了胞外释放引起的脱靶毒性,但释放效率低,需要良好的内化过程[50, 51]。不可切割连接子被内吞入溶酶体后,连接子不会被降解,连接的抗体则会被降解为氨基酸,形成氨基酸-连接子-小分子细胞毒复合物。由于“连接子-氨基酸残基”带有电荷限制了其透膜及扩散,因而通常不会产生旁观者效应[46]

  • 随着技术的进步,越来越复杂的药物化学方法正在应用于连接子设计,以获得更高效、耐受性更优良的ADC [42]

  • 2.4 抗体偶联药物中的细胞毒性载荷

  • ADC所携带的细胞毒性载荷药物是其最重要的效应成分,或称为有效载荷。目前,常用的细胞毒性分子包括微管生成抑制剂、DNA损伤因子和DNA转录抑制剂等 (见表3)。微管生成抑制剂通过与微管结合阻止微管的聚合,从而阻滞细胞周期,产生细胞毒性,发挥抗肿瘤作用,例如au⁃ ristatin、美登素(Maytansine)及其类似物。DNA损伤因子则通过与DNA的小沟结合并促进DNA链烷基化、断裂或交联,例如Calicheamicin、Duocarmycins、 Anthracyclines、Pyrrolobenzodiazepine dimers。 DNA转录抑制剂有Amatoxin和Quinoline Alkaloid (SN-38) [52-54]

  • 表3 常用ADC毒性药物载荷的化学结构

  • 续表

  • 2.5 偶联方式 (Conjugation)

  • 偶联方式主要分为非定点偶联和定点偶联。早期使用的是非定点偶联法,主要由赖氨酸或半胱氨酸偶联。定点偶联方式即通过基因工程位点进行特异性偶联,实现更均一的ADC,能在特定位点实现细胞毒素的连接。

  • 2.5.1 非定点偶联

  • 偶联选择性差,产品均一性不足。在细胞毒载荷与单抗的结合中,最早的方法是利用亲电基团,如马来酰亚胺或者N-羟基琥珀酰亚胺 (N-Hydroxy Succinimide,NHS) 和暴露赖氨酸的氨基反应。但是由于单个抗体上存在约80多个赖氨酸的氨基可供连接,因此反应呈现随机性,导致每个抗体上携带的药物分子数量并不相同,产品异质性明显,这对于ADC药物的PD/PK等参数会产生较大的影响。在已上市的产品中,Kadcyla、Mylotarg、Besponsa均使用此法偶联。

  • 依靠还原二硫键的半胱氨酸的非定点偶联也存在均一性不足的问题。依靠还原二硫键的半胱氨酸非定点偶联方式是目前使用较多的偶联方式,En⁃ hertu、Trodelvy、Adcetris均使用此法。单克隆抗体IgG1含有12个链内二硫键和4个链间二硫键。链内二硫键由于处于抗体两层反向平行的β折叠结构之间,不易暴露,导致较低的反应性。链间二硫键易被还原剂作用,可还原出8个巯基,进一步与连接着反应基团的毒素分子偶联,形成0、2、4、6、8几种主要的药物偶联形式。

  • 第一代和第二代ADC药物均为随机偶联,尽管平均DAR值在4~6,但ADC药物均一性较低,给工艺一致性带来了较大的挑战[55-57]

  • 2.5.2 定点偶联

  • 定点偶联技术有望获得均一性更好的ADC产品,提升ADC产品的稳定性,降低脱靶毒性。定点偶联技术主要包括特异性位点偶联技术、非天然氨基酸偶联技术、聚糖偶联技术和短肽标签偶联技术等。

  • 特异性位点偶联技术,以基因泰克的Thiomab技术为例,通过基因工程技术在抗体特定位置插入半胱氨酸残基,将半胱氨酸上的巯基与小分子毒物偶联,形成DAR值稳定的高均一性的ADC药物[58]。与传统随机偶联得到的ADC药物相比,使用Thi⁃ omab抗体的ADC药物在血浆中具有低聚集性、高稳定性和较强的体内外抗肿瘤活性[59]

  • 基于非天然氨基酸 (non-natural Amino Acid, nnAA) 的技术。nnAA为ADC的制备提供了位点特异性的解决方案,消除了内源性赖氨酸或半胱氨酸残基随机生成的偶联物的异质性和固有的不稳定性[60]。过程可简述为首先人工合成相比天然氨基酸特异性和稳定性更好的nnAA,通过正交tRNA合成酶、正交tRNA、独特的密码子系统在蛋白质特定位点引入nnAA,所引入的nnAA作为药物偶联的特异性位点。

  • 聚糖偶联 (GlycoConnect) 技术。聚糖偶联技术可利用大多数IgG单克隆抗体Fc段中含有天门冬酰胺297残基的糖基化修饰,这是一个很适合的特异性药物偶联位点[61, 62]。过程可简述为抗体通过糖苷内切酶切除N端聚糖,只剩下糖胺 (GlcNAc),然后添加N-叠氮乙酰半乳糖胺 (N-Azidoacetylga-lactosamine,GalNAz)。因此,叠氮化聚糖提供了一个位点特异性的锚点[63]

  • 短肽标签偶联技术。通过将细胞毒素偶联到含有4到6个氨基酸残基的特定短肽标签上的偶联技术。Strop等[64] 将谷氨酰胺标签(Leu-Leu-Gln-Gly, LLQG) 引入到抗体分子中,使标签中的谷氨酰胺被mTG识别,从而转移含胺药物。在抗体的N端或C端插入被甲酰基甘氨酸生成酶 (Formylglycine-Generating Enzyme,FGE) 识别的短肽标签LCx⁃ PxR。抗体与FGE共表达后,短肽标签中的半胱氨酸被细胞内酶氧化为含醛甲酰基甘氨酸,可与氨基功能化试剂偶联[65]。这类方法依赖于在抗体中引入独特的短肽标签,在体内或体外进行酶修饰。它们允许肽标签中的特定氨基酸功能化并与药物连接剂耦合。值得注意的是,这些引入的位于抗体不同区域的短肽标签可能具有潜在的免疫原性。

  • 4 总结

  • 与传统化疗相比,基于抗体分子平台的ADC能够靶向地将有效的细胞毒性载荷输送到目标癌细胞,从而提高疗效,降低全身毒性,并具有更好的药代动力学、药效学及体内分布,ADC在癌症治疗中具有巨大的潜力。据ClinicalTrials.gov的数据显示,截至2021年10月全球已完成104项ADC的临床试验,135项ADC临床试验处于招募/待开展/正在进行的状态。ADC临床试验的大量开展不仅反映了全球药物研发企业在这一领域日益增长的兴趣和信心,也突显了ADC通过其显著抗肿瘤效果确实可以使癌症患者获得有效的医疗干预和临床收益。

  • 对ADC设计的各个关键要素进行系统性的优化是提高其疗效的必要条件。通过发现新的靶抗原、建立新型的偶联技术、开发稳定性连接子、探索全新的细胞毒性载荷释放机制等有望解决ADC普遍存在的载荷脱靶和耐药问题,从而进一步提高其药效和安全性。通过发现新的肿瘤特征性抗原 (包括靶向肿瘤微环境),应用人源化/全人源的单克隆抗体以降低免疫原性,利用具有不同作用机制的强毒性载荷,优化连接子和偶联方法增加血浆稳定性,设计新型X-药物偶联物 (X是纳米抗体、多肽或小分子) 等,达到最大限度安全高效地将药物直接输送到肿瘤部位发挥功效的目的。近些年来,制药公司一直在努力克服ADC相关的技术障碍,包括血浆稳定性、有效载荷解离、低血液保留时间、最佳的肿瘤穿透、有效载荷效率降低、免疫原性、脱靶毒性和耐药性,对于提升ADC的临床效力发挥了巨大的推动作用。

  • ADC为血液系统恶性肿瘤和各种实体肿瘤患者的靶向治疗提供了新的解决方案。ADC可与化疗药物、小分子抑制剂和免疫疗法进行合理组合,作为广泛肿瘤类型治疗干预的其他潜在途径。联合治疗具有降低耐药性、提高药物疗效、抑制肿瘤转移和生长,提高癌症生存率的能力。

  • 但是,我们应该认识到,相比于抗体药物, ADC更加复杂,还有许多问题需要解决,例如ADC疗效与其结合抗原亲和力的关系、缩短内化时间、ADC进入细胞内的比例、ADC对靶抗原低表达的正常组织的毒性、连接子过早切割 (细胞毒性药物过早释放) 引起的不良反应、非肿瘤组织中非特异性胞吞作用引起的毒性、新细胞毒性药物库的建立、ADC耐药的机制与途径等。简而言之,ADC的设计并非一个简单的组合过程,在精心选择表达特定肿瘤抗原和相关适应症的过程中,除了考虑抗体、连接子和小分子细胞毒载荷自身特点及局限性外,更重要的是需要找到它们之间最佳的组合方式。

  • 总的来说,自第一个ADC药物上市以来,已有数千篇关于ADC的研究论文发表,截止目前已有12种ADC批准上市。这些表明ADC已成为近年来全球药物研发的热点,也是医药产业一个重要的细分领域和增长点,预计将有更多ADC获批上市,用于治疗其他类型的癌症。

  • 参考文献

    • [1] LAMBERT J M,MORRIS C Q.Antibody-Drug Conjugates(ADCs)for personalized treatment of solid tumors:a review[J].Adv Ther,2017,34(5):1015-1035.

    • [2] SCHWARTZ R.Paul ehrlich's magic bullets[J].New England Journal of Med,2004,350(11):1079-1080.

    • [3] WINAU F,WESTPHAL O,WINAU R.Paul ehrlich-in search of the magic bullet[J].Microbes Infect 2004,6(8):786-789.

    • [4] STREBHARDT K,ULLRICH A.Paul ehrlich's magic bullet concept:100 years of progress[J].Nat Rev Cancer,2008,8(6):473-480.

    • [5] DEVITA V T,CHU E.A history of cancer chemotherapy [J].Cancer Res,2008,68(21):8643-8653.

    • [6] MATHE G,TRAN BA L O,BERNARD J.Effect on mouse leukemia 1210 of a combination by diazo-reaction of amethopterin and gamma-globulins from hamsters inoculated with such leukemia by heterografts[J].C R Hebd Seances Acad Sci,1958,246(10):1626-1628.

    • [7] GOLDENBERG D M,PRESTON D F,PRIMUS F J,et al.Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G[J].Cancer Res,1974,34(1):1-9.

    • [8] MOOLTEN F L,CAPPARELL N J,ZAJDEL S H,et al.Antitumor effects of antibody-diphtheria toxin conjugates.Ⅱ.Immunotherapy with conjugates directed against tumor antigens induced by simian virus 40[J].J Natl Cancer Inst,1975,55(2):473-477.

    • [9] GOLDENBERG D M,GAFFAR S A,BENNETT S J,et al.Experimental radioimmunotherapy of a xenografted human colonic tumor(GW-39)producing carcinoem-bryonic antigen[J].Cancer Res,1981,41(11 Pt 1):4354-4360.

    • [10] GHETIE M A,MAY R D,TILL M,et al.Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy[J].Cancer Res,1988,48(9):2610-2617.

    • [11] ELIAS D J,HIRSCHOWITZ L,KLINE L E,et al.Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma[J].Cancer Res,1990,50(13):4154-4159.

    • [12] WU A M,SENTER P D.Arming antibodies:prospects and challenges for immunoconjugates[J].Nat Biotechnol,2005,23(9):1137-1146.

    • [13] TRAIL P A,WILLNER D,LASCH S J,et al.Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates[J].Science,1993,261(5118):212-215.

    • [14] LIU J K.The history of monoclonal antibody development-progress,remaining challenges and future innovations[J].Ann Med Surg(Lond),2014,3(4):113-116.

    • [15] WALTS A E,SAID J W.Specific tumor markers in diagnostic cytology.Immunoperoxidase studies of carcinoembryonic antigen,lysozyme and other tissue antigens in effusions,washes and aspirates[J].Acta Cytologica,1983,27(4):408-416.

    • [16] WALKO C M,WEST H J.Antibody drug conjugates for cancer treatment[J].JAMA Oncol,2019,5(11):1648.

    • [17] NORSWORTHY K J,KO C W,LEE J E,et al.FDA approval summary:mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia[J].Oncologist,2018,23(9):1103-1108.

    • [18] SIEVERS E L,LINENBERGER M.Mylotarg:antibody-targeted chemotherapy comes of age[J].Current Opinion in Oncology,2001,13(6):522-527.

    • [19] GOLDENBERG D M,SHARKEY R M.Antibody-drug conjugates targeting TROP-2 and incorporating SN-38:a case study of anti-TROP-2 sacituzumab govitecan[J].MAbs,2019,11(6):987-995.

    • [20] SENTER P D,SIEVERS E L.The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma[J].Nat Biotechnol,2012,30(7):631-637.

    • [21] DERE R,YI J H,LEI C,et al.PK assays for antibody-drug conjugates:case study with ado-trastuzumab emtansine[J].Bioanalysis,2013,5(9):1025-1040.

    • [22] SYED Y Y.Sacituzumab govitecan:first approval[J].Drugs,2020,80(10):1019-1025.

    • [23] TAKEGAWA N,NONAGASE Y,YONESAKA K,et al.DS-8201a,a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor,overcomes HER2-positive gastric cancer T-DM1 resistance[J].Int J Cancer,2017,141(8):1682-1689.

    • [24] DAMELIN M,ZHONG W,MYERS J,et al.Evolving strategies for target selection for antibody-drug conjugates [J].Pharm Res,2015,32(11):3494-3507.

    • [25] TIPTON T R,ROGHANIAN A,OLDHAM R J,et al.Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies[J].Blood,2015,125(12):1901-1909.

    • [26] DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].British Journal of Cancer,2016,114(4):362-367.

    • [27] DONAGHY H.Effects of antibody,drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates[J].MAbs,2016,8(4):659-671.

    • [28] STROHL W R.Current progress in innovative engineered antibodies[J].Protein Cell,2018,9(1):86-120.

    • [29] KHONGORZUL P,LING C J,KHAN F U,et al.Antibody-drug conjugates:a comprehensive review[J].Mol Cancer Res,2020,18(1):3-19.

    • [30] DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].Br J Cancer,2016,114(4):362-367.

    • [31] PALUMBO A,HAULER F,DZIUNYCZ P,et al.A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels[J].Br J Cancer,2011,104(7):1106-1115.

    • [32] VISVADER J E,LINDEMAN G J.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer,2008,8(10):755-768.

    • [33] NEJADMOGHADDAM M R,MINAI-TEHRANI A,GHAHREMANZADEH R,et al.Antibody-drug conju-gates:possibilities and challenges[J].Avicenna J Med Biotechnol,2019,11(1):3-23.

    • [34] PANOWSKI S,BHAKTA S,RAAB H,et al.Site-specific antibody drug conjugates for cancer therapy[J].MAbs,2014,6(1):34-45.

    • [35] JIN Y,SCHLADETSCH M A,HUANG X,et al.Stepping forward in antibody-drug conjugate development[J].Pharmacol Ther,2021:107917.

    • [36] SCHLOM J,HAND P H,GREINER J W,et al.Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting[J].Cancer Res,1990,50(3 Suppl):820s-827s.

    • [37] PEGRAM M D,MILES D,TSUI C K,et al.HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors[J].Clin Cancer Res,2020,26(4):775-786.

    • [38] PRUSZYNSKI M,KOUMARIANOU E,VAIDYANATHAN G,et al.Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody[J].Nucl Med Biol,2013,40(1):52-59.

    • [39] FILNTISI A,VLACHAKIS D,MATSOPOULOS G K,et al.Computational construction of antibody-drug conjugates using surface lysines as the antibody conjugation site and a non-cleavable linker[J].Cancer Inform,2014,13:179-186.

    • [40] BECK A,D'ATRI V,EHKIRCH A,et al.Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates:present and future[J].Expert Rev Proteomics,2019,16(4):337-362.

    • [41] EXCOFFIER M,JANIN-BUSSAT M C,BEAULARVOR C,et al.A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species[J].J Chromatogr B Analyt Technol Biomed Life Sci,2016,1032:149-154.

    • [42] TSUCHIKAMA K,AN Z.Antibody-drug conjugates:recent advances in conjugation and linker chemistries[J].Protein Cell,2018,9(1):33-46.

    • [43] THORPE P E,WALLACE P M,KNOWLES P P,et al.New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo[J].Cancer Res,1987,47(22):5924-5931.

    • [44] YAO H,JIANG F,LU A,et al.Methods to design and synthesize antibody-drug conjugates(ADCs)[J].Int J Mol Sci,2016,17(2):194.

    • [45] MUELLER B M,WRASIDLO W A,REISFELD R A.Antibody conjugates with morpholinodoxorubicin and acid-cleavable linkers[J].Bioconjug Chem,1990,1(5):325-330.

    • [46] BARGH J D,ISIDRO-LLOBET A,PARKER J S,et al.Cleavable linkers in antibody-drug conjugates[J].Chem Soc Rev,2019,48(16):4361-4374.

    • [47] CHARI R V,MILLER M L,WIDDISON W C.Antibody-drug conjugates:an emerging concept in cancer therapy[J].Angew Chem Int Ed Engl,2014,53(15):3796-3827.

    • [48] TUMEY L N,HAN S.ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers[J].Curr Top Med Chem,2017,17(32):3444-3462.

    • [49] DAN N,SETUA S,KASHYAP V K,et al.Antibody-drug conjugates for cancer therapy:chemistry to clinical implications[J].Pharmaceuticals(Basel),2018,11(2):32.

    • [50] GIANOLIO D A,ROULEAU C,BAUTA W E,et al.Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab,novel antibody-drug conjugates[J].Cancer Chemother Pharmacol,2012,70(3):439-449.

    • [51] MCCOMBS J R,OWEN S C.Antibody drug conjugates:design and selection of linker,payload and conjugation chemistry[J].AAPS J,2015,17(2):339-351.

    • [52] GROMEK S M,BALUNAS M J.Natural products as exquisitely potent cytotoxic payloads for antibody-drug conjugates[J].Curr Top Med Chem,2015,14(24):2822-2834.

    • [53] CHEN H,LIN Z,ARNST K E,et al.Tubulin inhibitor-based antibody-drug conjugates for cancer therapy[J].Molecules,2017,22(8):1281.

    • [54] THEOCHAROPOULOS C,LIALIOS P P,GOGAS H,et al.An overview of antibody-drug conjugates in oncological practice[J].Ther Adv Med Oncol,2020,12:1-20.

    • [55] WAKANKAR A A,FEENEY M B,RIVERA J,et al.Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1:changes due to modification and conjugation processes[J].Bioconjug Chem,2010,21(9):1588-1595.

    • [56] STEPHAN J P,KOZAK K R,WONG W L.Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates[J].Bioanalysis,2011,3(6):677-700.

    • [57] WANG L,AMPHLETT G,BLÄTTLER W A,et al.Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate,huN901-DM1,by mass spectrometry[J].Protein Sci,2005,14(9):2436-2446.

    • [58] JUNUTULA JR,RAAB H,CLARK S,et al.Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index[J].Nat Biotechnol,2008,26(8):925-932.

    • [59] ZHOU Q.Site-specific antibody conjugation for ADC and beyond[J].Biomedicines,2017,5(4):64.

    • [60] AXUP J Y,BAJJURI K M,RITLAND M,et al.Synthesis of site-specific antibody-drug conjugates using unnatural amino acids[J].Proc Natl Acad Sci U S A,2012,109(40):16101-16106.

    • [61] QASBA P K.Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases[J].Bioconjug Chem,2015,26(11):2170-2175.

    • [62] ZHOU Q,STEFANO J E,MANNING C,et al.Site-specific antibody-drug conjugation through glycoengineering[J].Bioconjug Chem,2014,25(3):510-520.

    • [63] VAN GEEL R,WIJDEVEN M A,HEESBEEN R,et al.Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mabs provides homogeneous and highly efficacious antibody-drug conjugates[J].Bioconjug Chem,2015,26(11):2233-2242.

    • [64] STROP P,LIU S H,DORYWALSKA M,et al.Location matters:site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates[J].Chem Biol,2013,20(2):161-167.

    • [65] WU P,SHUI W,CARLSON B L,et al.Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag[J].Proc Natl Acad Sci U S A,2009,106(9):3000-3005.

  • 参考文献

    • [1] LAMBERT J M,MORRIS C Q.Antibody-Drug Conjugates(ADCs)for personalized treatment of solid tumors:a review[J].Adv Ther,2017,34(5):1015-1035.

    • [2] SCHWARTZ R.Paul ehrlich's magic bullets[J].New England Journal of Med,2004,350(11):1079-1080.

    • [3] WINAU F,WESTPHAL O,WINAU R.Paul ehrlich-in search of the magic bullet[J].Microbes Infect 2004,6(8):786-789.

    • [4] STREBHARDT K,ULLRICH A.Paul ehrlich's magic bullet concept:100 years of progress[J].Nat Rev Cancer,2008,8(6):473-480.

    • [5] DEVITA V T,CHU E.A history of cancer chemotherapy [J].Cancer Res,2008,68(21):8643-8653.

    • [6] MATHE G,TRAN BA L O,BERNARD J.Effect on mouse leukemia 1210 of a combination by diazo-reaction of amethopterin and gamma-globulins from hamsters inoculated with such leukemia by heterografts[J].C R Hebd Seances Acad Sci,1958,246(10):1626-1628.

    • [7] GOLDENBERG D M,PRESTON D F,PRIMUS F J,et al.Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G[J].Cancer Res,1974,34(1):1-9.

    • [8] MOOLTEN F L,CAPPARELL N J,ZAJDEL S H,et al.Antitumor effects of antibody-diphtheria toxin conjugates.Ⅱ.Immunotherapy with conjugates directed against tumor antigens induced by simian virus 40[J].J Natl Cancer Inst,1975,55(2):473-477.

    • [9] GOLDENBERG D M,GAFFAR S A,BENNETT S J,et al.Experimental radioimmunotherapy of a xenografted human colonic tumor(GW-39)producing carcinoem-bryonic antigen[J].Cancer Res,1981,41(11 Pt 1):4354-4360.

    • [10] GHETIE M A,MAY R D,TILL M,et al.Evaluation of ricin A chain-containing immunotoxins directed against CD19 and CD22 antigens on normal and malignant human B-cells as potential reagents for in vivo therapy[J].Cancer Res,1988,48(9):2610-2617.

    • [11] ELIAS D J,HIRSCHOWITZ L,KLINE L E,et al.Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma[J].Cancer Res,1990,50(13):4154-4159.

    • [12] WU A M,SENTER P D.Arming antibodies:prospects and challenges for immunoconjugates[J].Nat Biotechnol,2005,23(9):1137-1146.

    • [13] TRAIL P A,WILLNER D,LASCH S J,et al.Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates[J].Science,1993,261(5118):212-215.

    • [14] LIU J K.The history of monoclonal antibody development-progress,remaining challenges and future innovations[J].Ann Med Surg(Lond),2014,3(4):113-116.

    • [15] WALTS A E,SAID J W.Specific tumor markers in diagnostic cytology.Immunoperoxidase studies of carcinoembryonic antigen,lysozyme and other tissue antigens in effusions,washes and aspirates[J].Acta Cytologica,1983,27(4):408-416.

    • [16] WALKO C M,WEST H J.Antibody drug conjugates for cancer treatment[J].JAMA Oncol,2019,5(11):1648.

    • [17] NORSWORTHY K J,KO C W,LEE J E,et al.FDA approval summary:mylotarg for treatment of patients with relapsed or refractory CD33-positive acute myeloid leukemia[J].Oncologist,2018,23(9):1103-1108.

    • [18] SIEVERS E L,LINENBERGER M.Mylotarg:antibody-targeted chemotherapy comes of age[J].Current Opinion in Oncology,2001,13(6):522-527.

    • [19] GOLDENBERG D M,SHARKEY R M.Antibody-drug conjugates targeting TROP-2 and incorporating SN-38:a case study of anti-TROP-2 sacituzumab govitecan[J].MAbs,2019,11(6):987-995.

    • [20] SENTER P D,SIEVERS E L.The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma[J].Nat Biotechnol,2012,30(7):631-637.

    • [21] DERE R,YI J H,LEI C,et al.PK assays for antibody-drug conjugates:case study with ado-trastuzumab emtansine[J].Bioanalysis,2013,5(9):1025-1040.

    • [22] SYED Y Y.Sacituzumab govitecan:first approval[J].Drugs,2020,80(10):1019-1025.

    • [23] TAKEGAWA N,NONAGASE Y,YONESAKA K,et al.DS-8201a,a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor,overcomes HER2-positive gastric cancer T-DM1 resistance[J].Int J Cancer,2017,141(8):1682-1689.

    • [24] DAMELIN M,ZHONG W,MYERS J,et al.Evolving strategies for target selection for antibody-drug conjugates [J].Pharm Res,2015,32(11):3494-3507.

    • [25] TIPTON T R,ROGHANIAN A,OLDHAM R J,et al.Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies[J].Blood,2015,125(12):1901-1909.

    • [26] DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].British Journal of Cancer,2016,114(4):362-367.

    • [27] DONAGHY H.Effects of antibody,drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates[J].MAbs,2016,8(4):659-671.

    • [28] STROHL W R.Current progress in innovative engineered antibodies[J].Protein Cell,2018,9(1):86-120.

    • [29] KHONGORZUL P,LING C J,KHAN F U,et al.Antibody-drug conjugates:a comprehensive review[J].Mol Cancer Res,2020,18(1):3-19.

    • [30] DIAMANTIS N,BANERJI U.Antibody-drug conjugates-an emerging class of cancer treatment[J].Br J Cancer,2016,114(4):362-367.

    • [31] PALUMBO A,HAULER F,DZIUNYCZ P,et al.A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels[J].Br J Cancer,2011,104(7):1106-1115.

    • [32] VISVADER J E,LINDEMAN G J.Cancer stem cells in solid tumours:accumulating evidence and unresolved questions[J].Nat Rev Cancer,2008,8(10):755-768.

    • [33] NEJADMOGHADDAM M R,MINAI-TEHRANI A,GHAHREMANZADEH R,et al.Antibody-drug conju-gates:possibilities and challenges[J].Avicenna J Med Biotechnol,2019,11(1):3-23.

    • [34] PANOWSKI S,BHAKTA S,RAAB H,et al.Site-specific antibody drug conjugates for cancer therapy[J].MAbs,2014,6(1):34-45.

    • [35] JIN Y,SCHLADETSCH M A,HUANG X,et al.Stepping forward in antibody-drug conjugate development[J].Pharmacol Ther,2021:107917.

    • [36] SCHLOM J,HAND P H,GREINER J W,et al.Innovations that influence the pharmacology of monoclonal antibody guided tumor targeting[J].Cancer Res,1990,50(3 Suppl):820s-827s.

    • [37] PEGRAM M D,MILES D,TSUI C K,et al.HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors[J].Clin Cancer Res,2020,26(4):775-786.

    • [38] PRUSZYNSKI M,KOUMARIANOU E,VAIDYANATHAN G,et al.Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody[J].Nucl Med Biol,2013,40(1):52-59.

    • [39] FILNTISI A,VLACHAKIS D,MATSOPOULOS G K,et al.Computational construction of antibody-drug conjugates using surface lysines as the antibody conjugation site and a non-cleavable linker[J].Cancer Inform,2014,13:179-186.

    • [40] BECK A,D'ATRI V,EHKIRCH A,et al.Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates:present and future[J].Expert Rev Proteomics,2019,16(4):337-362.

    • [41] EXCOFFIER M,JANIN-BUSSAT M C,BEAULARVOR C,et al.A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species[J].J Chromatogr B Analyt Technol Biomed Life Sci,2016,1032:149-154.

    • [42] TSUCHIKAMA K,AN Z.Antibody-drug conjugates:recent advances in conjugation and linker chemistries[J].Protein Cell,2018,9(1):33-46.

    • [43] THORPE P E,WALLACE P M,KNOWLES P P,et al.New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo[J].Cancer Res,1987,47(22):5924-5931.

    • [44] YAO H,JIANG F,LU A,et al.Methods to design and synthesize antibody-drug conjugates(ADCs)[J].Int J Mol Sci,2016,17(2):194.

    • [45] MUELLER B M,WRASIDLO W A,REISFELD R A.Antibody conjugates with morpholinodoxorubicin and acid-cleavable linkers[J].Bioconjug Chem,1990,1(5):325-330.

    • [46] BARGH J D,ISIDRO-LLOBET A,PARKER J S,et al.Cleavable linkers in antibody-drug conjugates[J].Chem Soc Rev,2019,48(16):4361-4374.

    • [47] CHARI R V,MILLER M L,WIDDISON W C.Antibody-drug conjugates:an emerging concept in cancer therapy[J].Angew Chem Int Ed Engl,2014,53(15):3796-3827.

    • [48] TUMEY L N,HAN S.ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers[J].Curr Top Med Chem,2017,17(32):3444-3462.

    • [49] DAN N,SETUA S,KASHYAP V K,et al.Antibody-drug conjugates for cancer therapy:chemistry to clinical implications[J].Pharmaceuticals(Basel),2018,11(2):32.

    • [50] GIANOLIO D A,ROULEAU C,BAUTA W E,et al.Targeting HER2-positive cancer with dolastatin 15 derivatives conjugated to trastuzumab,novel antibody-drug conjugates[J].Cancer Chemother Pharmacol,2012,70(3):439-449.

    • [51] MCCOMBS J R,OWEN S C.Antibody drug conjugates:design and selection of linker,payload and conjugation chemistry[J].AAPS J,2015,17(2):339-351.

    • [52] GROMEK S M,BALUNAS M J.Natural products as exquisitely potent cytotoxic payloads for antibody-drug conjugates[J].Curr Top Med Chem,2015,14(24):2822-2834.

    • [53] CHEN H,LIN Z,ARNST K E,et al.Tubulin inhibitor-based antibody-drug conjugates for cancer therapy[J].Molecules,2017,22(8):1281.

    • [54] THEOCHAROPOULOS C,LIALIOS P P,GOGAS H,et al.An overview of antibody-drug conjugates in oncological practice[J].Ther Adv Med Oncol,2020,12:1-20.

    • [55] WAKANKAR A A,FEENEY M B,RIVERA J,et al.Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1:changes due to modification and conjugation processes[J].Bioconjug Chem,2010,21(9):1588-1595.

    • [56] STEPHAN J P,KOZAK K R,WONG W L.Challenges in developing bioanalytical assays for characterization of antibody-drug conjugates[J].Bioanalysis,2011,3(6):677-700.

    • [57] WANG L,AMPHLETT G,BLÄTTLER W A,et al.Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate,huN901-DM1,by mass spectrometry[J].Protein Sci,2005,14(9):2436-2446.

    • [58] JUNUTULA JR,RAAB H,CLARK S,et al.Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index[J].Nat Biotechnol,2008,26(8):925-932.

    • [59] ZHOU Q.Site-specific antibody conjugation for ADC and beyond[J].Biomedicines,2017,5(4):64.

    • [60] AXUP J Y,BAJJURI K M,RITLAND M,et al.Synthesis of site-specific antibody-drug conjugates using unnatural amino acids[J].Proc Natl Acad Sci U S A,2012,109(40):16101-16106.

    • [61] QASBA P K.Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases[J].Bioconjug Chem,2015,26(11):2170-2175.

    • [62] ZHOU Q,STEFANO J E,MANNING C,et al.Site-specific antibody-drug conjugation through glycoengineering[J].Bioconjug Chem,2014,25(3):510-520.

    • [63] VAN GEEL R,WIJDEVEN M A,HEESBEEN R,et al.Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mabs provides homogeneous and highly efficacious antibody-drug conjugates[J].Bioconjug Chem,2015,26(11):2233-2242.

    • [64] STROP P,LIU S H,DORYWALSKA M,et al.Location matters:site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates[J].Chem Biol,2013,20(2):161-167.

    • [65] WU P,SHUI W,CARLSON B L,et al.Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag[J].Proc Natl Acad Sci U S A,2009,106(9):3000-3005.