en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

苏秀兰(1956-),女,山西大同人,博士生导师,主要从事生物活性肽作用机制及转化研究。E-mail:xlsu@sina.com

中图分类号:R363.2+1,R575.2

文献标识码:A

文章编号:2096-8965(2021)03-0049-08

DOI:10.12287/j.issn.2096-8965.20210308

参考文献 1
LLOVET J,ZUCMAN-ROSSI J,PIKARSKY E,et al.Hepatocellular carcinoma[J].Nature reviews Disease primers,2016,2:16018.
参考文献 2
MARCELLIN P,KUTALA B K.Liver diseases:a major,neglected global public health problem requiring urgent actions and large-scale screening[J].Liver International,2018,38(S1):2-6.
参考文献 3
ASRANI S K,DEVARBHAVI H,EATON J,et al.Burden of liver diseases in the world[J].Journal of hepatology,2019,70(1):151-171.
参考文献 4
HERMANSYAH D,PUTRA A,MUHAR A,et al.Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis[J].Med Arch,2021,75(1):16-22.
参考文献 5
HU Y P,HE J,HE L H,et al.Expression and function of Smad7 in autoimmune and inflammatory diseases[J].Journal of molecular medicine,2021,99:1209-1220.
参考文献 6
ELPEK G Ö.Cellular and molecular mechanisms in the pathogenesis of liver fibrosis:an update[J].World J Gastroenterol,2014,20(23):7260-7276.
参考文献 7
LI H,LAN J,HAN C,et al.Brg1 promotes liver fibrosis via activation of hepatic stellate cells[J].Exp Cell Res,2018,364(2):191-197.
参考文献 8
AFFO S,YU L X,SCHWABE R F.The role of cancerassociated fibroblasts and fibrosis in liver cancer[J].Annu rev pathol,2017,12:153-186.
参考文献 9
ROEHLEN N,CROUCHET E,BAUMERT T F.Liver fibrosis:mechanistic concepts and therapeutic perspectives [J].Cells,2020,9(4):875.
参考文献 10
ALI A,WANG Z,FU J J,et al.Differential regulation of the REGγ-proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells[J].Nature Communications,2013,4:2667.
参考文献 11
DIJKE P T,DAM H V.14-3-3ζ turns TGF-β to the dark side[J].Cancer Cell,2015,27(2):151-153.
参考文献 12
PATIL A S,SABLE R B,KOTHARI R M.An update on transforming growth factor-β(TGF-β):sources,types,functions and clinical applicability for cartilage/bone healing[J].Journal of Cellular Physiology,2011,226(12):3094-3103.
参考文献 13
DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.
参考文献 14
DI GREGORIO J,ROBUFFO I,SPALLETTA S,et al.The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders[J].Front cell Dev Biol,2020,8:607483.
参考文献 15
WOSIAK A,WODZIŃSKI D,MICHALSKA K,et al.Assessment of the role of selected SMAD3 and SMAD4 genes polymorphisms in the development of colorectal cancer:preliminary research[J].Pharmacogenomics and Pers Med,2021,14:167-178.
参考文献 16
SIEGEL P M,MASSAGUÉ J.Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer[J].Nat Rev Cancer,2003,3(11):807-821.
参考文献 17
KORPAL M,KANG Y B.Targeting the transforming growth factor-β signalling pathway in metastatic cancer [J].Eur J,2010,46(7):1232-1240.
参考文献 18
GADALETA R M,ERPECUM K J V,OLDENBURG B,et al.Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J].Gut,2011,60(4):463-472.
参考文献 19
XIAO K,YANG L,XIE W,et al.Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGFβ/BMP expression levels[J].Exp Ther Med,2021,22(1):736.
参考文献 20
SANADA T J,SUN X Q,HAPPÉ C,et al.Altered TGFβ/SMAD signaling in human and rat models of pulmonary hypertension:an old target needs attention[J].Cells,2021,10(1):84.
参考文献 21
DERYNCK R,AKHURST R J-BAT MAIN A,et al.TGF-β signaling in tumor suppression and cancer progression [J].Nature Genetics,2001,29:117-129.
参考文献 22
YANG L,ROH Y S,SONG J Y,et al.Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice[J].Hepatology,2014,59(2):483-495.
参考文献 23
TU X L,ZHENG X X,LI H N,et al.MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J].Toxicological Sciences,2015,146(1):157-169.
参考文献 24
YU F J,GUO Y,CHEN B C,et al.MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7 [J].Laboratory Investigation.2015,95(7):781-789.
参考文献 25
DAVID C J,MASSAGUÉ J,et al.Contextual determinants of TGFβ action in development,immunity and cancer[J].Nature reviews Molecular cell biology,2018,19(7):419-435.
参考文献 26
SEOANE J,GOMIS R R,et al.TGF-β family signaling in tumor suppression and cancer progression[J].Cold Spring Harbor Perspectives in Biology,2017,9(12):a022277
参考文献 27
DERYNCKR,FENG X H.TGF-beta receptor signaling[J].Biochim Et Biophys Acta,1997,1333(2):105-150.
参考文献 28
DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.
参考文献 29
DEWIDAR B,MEYER C,DOOLEY S,et al.TGF-β in hepatic stellate cell activation and liver fibrogenesis— updated 2019[J].Cells,2019,8(11):149.
参考文献 30
FABREGAT I,MCRENO-CACERES J,SANCHEZA,et al.TGF-beta signalling and liver disease[J].FEBS J,2016,283(12):2219-2232.
参考文献 31
SISTO M,RIBATTI D,LISI S.SMADS-mediate molecular mechanisms in sjögren's Syndrome[J].Int J of Molecular SCI,2021,22(6):3203.
参考文献 32
ZHOU W C,ZHANG Q B,QIAO L.Pathogenesis of liver cirrhosis[J].World J Gastroenterol,2014,20(23):7312-7324.
参考文献 33
CHEN W X,LI Y M,YU C H,et al.Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease[J].World J Gastroenterol,2002,8(2):379-381.
参考文献 34
TAKIYA S,TAGAYA T,TAKAHASHI K,et al.Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases[J].Journal of Clinical Pathology,1995,48(12):1093-1097.
参考文献 35
CLOUTHIER D E,COMERFORD S A,HAMMER R E.Hepatic fibrosis,glomerulosclerosis,and lipodystrophylike PEPCK-TGF-beta-1 transgenic mice[J].Journal of Clinical Investigation,1998,100(11):2697-2713.
参考文献 36
BORDER W A,NOBLE N A.Transforming growth factor beta in tissue fibrosis[J].The New England Journal of Medicine,1994,331(19):1286-1292.
参考文献 37
ARIAS M,LAHME B,VAN D L E,et al.Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells[J].Cell Growth & Differentiation the Molecular Biology Journal of the American Association for Cancer Research,2002,13(6):265-273.
参考文献 38
WEI J,YANG C Q,LIU W B,et al.Blockage of transforming growth factor β receptors prevents progression of pig serum-induced rat liver fibrosis[J].World J Gastroenterol,2004,10(11):1634-1638.
参考文献 39
PARK M,PARK H,AN Y,et al.Synthesis,biological evaluation and molecular modelling of 2,4-disubstituted5-(6-alkylpyridin-2-yl)-1H-imidazoles as ALK5 inhibitors [J].Journal of Enzyme Inhibition and Medicinal Chemistry,2020,35(1):702-712.
参考文献 40
BIOULAC-SAGE P,LAUMONIER H,CUBEL G,et al.Hepatic resection for inflammatory hepatocellular adenomas:pathological identification of micronodules expressing inflammatory proteins[J].Liver Int,2010,30(1):149-154.
参考文献 41
FENG T,DZIERAN J,GU X et al.Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma[J].Clinical Science,2015,128(11):761-774.
参考文献 42
LIU J F,KONG D L,QIU J F,et al.Praziquantel ameliorates CCl-induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells[J].Br J Pharmacol,2019,176(24):4666-4680.
参考文献 43
TAN R P,CHAN A H P,LENNARTSSON K,et al.Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis[J].Stem Cell Res Ther,2018,9(1):70.
参考文献 44
SU D,WU S,XU S.Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis[J].Stem Cell Res Ther,2020,11(1):395.
参考文献 45
XU F Y,LIU C W,ZHOU D D,et al.TGF/SMAD pathways and its regulation in hepatic fibrosis[J].J Histochem Cytochem,2016,64(3):157-167.
参考文献 46
ROBERTS A B,RUSSO A,FELICI A.Smad3:a key player in pathogenetic mechanisms dependent on TGF-β [J].Ann NY Aca Sci,2003,995:1-10.
参考文献 47
NAKAMURA T,SAKATA R,UENO T,et al.Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats[J].Hepatology,2000,32(2):247-255.
参考文献 48
ZHOU Y,WU R,CAI F F,et al.Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology and transcriptomic analysis[J].J Ethnopharmacol,2021,264:113021.
参考文献 49
WU S W,LIU L C,YANG S,et al.Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling[J].Immunopharmacology and immunotoxicology,2019,41(3):438-445.
参考文献 50
CHEN Y J,LI R F,HU N,et al.Baihe Wuyao decoction ameliorates CCl4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling,anti-inflammation and anti-oxidation effects[J].J Ethnopharmacol,2020,263:113227.
参考文献 51
LIU X J,HAN H,YIN J Q.Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis[J].Liver International,2006,26(1):8-22.
参考文献 52
BANSAL M B,CHAMROONKUL N.Antifibrotics in liver disease:are we getting closer to clinical use?[J].Hepatol Int,2019,13(1):25-39.
参考文献 53
HARRISON S A,GOODMAN Z,JABBAR A,et al.A randomized,placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis[J].J Hepatol 2019,72(5):816-827.
参考文献 54
SHIFFMAN M,FREILICH B,WPPALANCHI R,et al.Randomised clinical trial:emricasan versus placebo significantly decreases ALT and caspase activation in subjects with non-alcoholic fatty liver disease[J].Alimentary Pharmacology & Therapeutics,2019,49(1):64-73.
参考文献 55
LOOMBA R,LAWITZ E,MANTRY P S,et al.The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis:a randomized,phase 2 trial[J].Hepatology,2018,67(2):549-559.
参考文献 56
FAGHIHZADEH F,ADIBI P,RAFIEI R,et al.Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease[J].Nut Res,2014,34(10):837-843.
参考文献 57
HEEBØLL S,KREUZFELDT M,HAMILTON-DUTOIT S,et al.Placebo-controlled,randomised clinical trial:high-dose resveratrol treatment for non-alcoholic fatty liver disease[J].Scand J Gastroenterol,2016,51(4):456-464.
参考文献 58
NEUSCJWANDER B A,LOOMBA R,SANYAL A J,et al.Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic,non-alcoholic steatohepatitis(FLINT):a multicentre,randomised,placebo-controlled trial[J].Lancet,2015,385(9972):956-965.
参考文献 59
MUDALIAR S,HENRY R R,SANYAL A J,et al.Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease[J].Gastroenterology,2013,145(3):574-582,el.
参考文献 60
HARRISON S A,ABDELMALEK M F,GALDWELL S,et al.Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis[J].Gastroenterology,2018,155(4):1140-1153.
参考文献 61
FRIEDMAN S,RATZIU V,HARRISON S A,et al.A randomized,placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J].Hepatology,2018,67(5):1754-1764.
参考文献 62
RATZIU V,SANYAL A,HARRISON S A,et al.Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis:final analysis of the phase 2b CENTAUR study[J].Hepatology,2020,72(3):892-905
目录contents

    摘要

    转化生长因子β (Transforming Growth Factor-β,TGF-β) 信号通路在调节细胞进程中起着至关重要的作用。就肝脏而言,TGF-β信号通路贯穿肝脏疾病始终,即从最初的肝细胞损伤到炎症、纤维化、肝硬化直至癌症发生。TGF-β导致肝星状细胞活化为成纤维细胞,并促使大量肝细胞死亡,促进了肝纤维化向肝硬化发展,而过度激活的TGF-β信号与肝癌发展密切相关。在本综述中,作者将阐述TGF-β/Smad信号通路在肝纤维化进程中的作用机制,以及目前在实验和临床诊治方面通过TGF-β信号通路靶向治疗肝脏疾病取得的新进展。以期为研究肝纤维化提供新的论据。

    Abstract

    The transforming growth factor-β (TGF-β) signaling pathway plays a vital role in regulating cell processes. As far as the liver is concerned, the TGF-β signaling pathway runs through liver diseases, from the initial liver cell injury to inflammation, fibrosis, cirrhosis and cancer. TGF-β causes hepatic stellate cells to acti‐ vate into fibroblasts, and promotes the death of a large number of hepatocytes, which promotes the development of liver fibrosis to cirrhosis, and the over-activated TGF-β signal is closely related to the development of liver can‐ cer. In this review, the author will describe the mechanism of action of the TGF-β/Smad signaling pathway in the process of liver fibrosis, as well as the new progress made in the experimental and clinical diagnosis and treatment of liver diseases through the TGF-β signaling pathway. In order to provide new evidence for the study of liver fibrosis.

  • 由病毒或者慢性代谢性肝病引起的肝纤维化,已经成为全球的健康问题。慢性肝病的潜在病因包括病毒性[1](乙型肝炎;HBV和丙型肝炎;HCV) 相关的慢性肝病、酒精性脂肪性肝炎(ASH) 和非酒精性脂肪性肝炎(NASH),以及自身免疫和遗传疾病,这些慢性肝病会引起炎症,而炎症会导致肝细胞坏死[2],进一步会导致肝纤维化向肝硬化发展,如果不加以干预,最终都会发展为肝癌(Hepato⁃ cellular Carcinoma,HCC)。在全球范围内,肝癌是第16大死亡原因,每年大约有200万人因肝脏疾病死亡[3]。其中值得注意的是转化生长因子β(Trans⁃ forming Growth Factor-β,TGF-β),它是肝纤维化发病机制的关键因素[4]。众所周知,TGF-β 通过激活下游介质Smad2和Smad3从而发挥其生物学作用,但其受到抑制性Smad7的负调控[5]。本文着眼于TGF-β/Smad信号通路,讨论TGF-β/Smad信号通路在肝纤维化中的分子机制,此外,探讨通过靶向TGF-β/Smad信号通路治疗肝纤维化的可能性,以期为研究肝脏纤维化临床治疗提供新想法。

  • 1 肝纤维化的病理过程中ECM的合成

  • 肝纤维化是慢性炎症反应的最终结果,其特征主要是细胞外基质(Extracellular Matrix,ECM) 中I型胶原的沉积,从而破坏肝脏的正常生理结构,导致肝功能障碍。在病理学上,毒性、代谢或病毒性疾病会导致肝细胞受损和免疫细胞浸润,从而激活肝星状细胞转分化为产生胶原蛋白的肌成纤维细胞[6]。肝星状细胞(Hepatic Stellate Cells,HSCs) 的活化是肝纤维化的关键[7],在正常肝脏中,HSCs处于静止状态,是静止的窦周细胞,肝损伤后[8], HSCs被激活,HSCs由储存维生素A的周样细胞转化为 α-SMA阳性、分泌胶原的成肌纤维细胞,活化的HSCs产生大量的ECM成分(主要包括Ⅰ、Ⅲ 和Ⅳ型胶原蛋白、纤连蛋白、层粘连蛋白和蛋白聚糖) 和促炎介质。持续的损伤,会破坏分泌胶原与溶解胶原之间的稳态,逐步积累形成纤维瘢痕[9],形成进行性肝纤维化,这些纤维瘢痕会破坏肝脏的正常结构并影响其功能。这种稳态取决于基质金属蛋白酶(Matrix Metalloproteinase,MMP) 与基质金属蛋白酶抑制剂(Tissue Inhibitor of Metallopro⁃ teinase,TIMP) 之间的平衡。此外在晚期肝纤维化中,活化的HSCs和肌成纤维细胞的收缩性促进肝血窦收缩,从而影响血流和营养交换,加重肝功能障碍。这时慢性肝损伤的ECM还可以通过释放细胞因子间接影响细胞功能。这些包括TGF-β、血小板衍生生长因子(Platelet-Derived Growth Fac⁃ tor,PDGF)、肝细胞生长因子(Hepatocyte Growth Factor,HGF)、结缔组织生长因子(Connective Tissue Growth Factor,CTGF)、肿瘤坏死因子-α(Tumor Necrosis Factor-α,TNF-α) 和血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)。

  • 研究表明,去除或消除病因,肝纤维化是可逆的,但是逆转通常发生得太慢或太罕见,特别是在晚期纤维化中,会发生无法避免的并发症。肝纤维化是肝硬化的前兆。而TGF-β 是肝纤维化过程的最强促纤维化细胞因子之一,它介导HSCs向肝成纤维细胞的转变,因此需要详细了解其作用与机制。

  • 2 TGF-β/Smads信号通路

  • 2.1 TGF-β

  • 研究表明TGF-β 在细胞功能中具有重要的作用。如调节细胞的生长、增殖、分化、迁移和凋亡,与此同时,TGF-β信号通路与免疫调节以及血管生成等生物过程密切相关[10]。TGF-β主要来源于血小板,但从骨骼中获取TGF-β 的数量更高[11, 12]。根据其在发育中的作用,TGF-β 家族主要分为TGF-β、骨形态发生蛋白(Bone Morphogenetic Protein, BMP)、激活素和相关蛋白[13]。目前, TGF-β 相关因子诱导信号反应的模型是从Ⅱ型到 Ⅰ型受体激酶再到Smad激活的线性信号通路,从而导致配体诱导转录。

  • 2.2 Smads

  • 在TGF-β信号通路中,激活的I型受体磷酸酯细胞质蛋白称为Smads,该蛋白是TGF-β的直接作用底物[14],包括Smad1-8。Smads蛋白可以分为三个不同的类别: R-Smads(受体调节Smads如Smad1、 Smad2、 Smad3、 Smad5和Smad8)、 CoSmads(共同介质Smads,包括代表性Smad4) 和I-Smads(抑制性Smads如Smad6和Smad7) [15]。细胞中包含不同种类的Smads辅助因子,Smads蛋白在受到TGF-β 刺激后进入细胞核中,经历了重复的去磷酸化循环,从细胞核重新穿梭回到细胞质,重新磷酸化并重新进入细胞核[16]。Smads蛋白在此期间会形成复合物并与其他DNA结合辅因子结合,结合DNA的Smads蛋白对特定的靶标启动子有高亲和力和选择性[17],从而调节基因转录,单个TGF-β 能够激活或者抑制数百个靶基因。其中使Smad2和Smad3磷酸化的主要是TGF-β亚家族(ALK4,ALK5和ALK7)的I型受体,而Smad3对诱导HSCs活化和促纤维化基因转录[18](例如α-SMA或COL1A1)至关重要。而TGF-β 亚家族(ALK1、ALK2、ALK3和ALK6) 激活Smad1、 Smad5和Smad8。他们(ALK2,ALK3和ALK6) 使间充质干细胞迁移和聚集,保持它们处于紧密状态,刺激Smad磷酸化,调节基因的转录[19]

  • 大多数TGF-β的转录反应是由Smad3/Smad4介导的[20]。Smad6和Smad7充当“抑制性”Smads,可以认为是抗纤维化因子[21]。Smad6和Smad7均可与I型受体相互作用,从而竞争性地阻止“受体激活 ” 的Smads被磷酸化。 Smad6还干扰异聚体Smads复合物的形成。TGF-β 信号传导诱导Smad7的表达,干扰激活的TGF-β 和BMP受体从而影响下游的Smad磷酸化或寡聚,这形成了TGF-β 诱导的负反馈。此外,Smad3缺乏会导致脂肪组织中的巨噬细胞表型改变,这对脂肪的形成也很重要。因此,Smad信号传导是促成TGF-β 应答脂质积累最终导致肝脏细胞死亡的重要途径[22]。而Smad7通过多种机制拮抗TGF-β 信号传导,并充当TGF-β 信号传导和其他信号传导途径之间的重要媒介。 Smad7在响应TGF-β刺激后迅速上调,并通过抑制受体诱导的Smad信号传导来控制TGF-β 信号的持续时间和强度[23],而Smad2和Smad3的磷酸化可以被Smad7阻止,这可能与Smad7调节miR-17-5p(调节细胞增殖和迁移功能内源性非编码RNA,属于miR-17-92簇成员,其在肝细胞癌中过表达) 的表达有关[24]

  • TGF-β通路是通过受体介导激活转录因子从而完成膜到核信号的传导。它作为配体与两种类型的跨膜丝氨酸/苏氨酸蛋白激酶结合从而触发Smad转录因子受体激活和磷酸化[25]。TGF-β/Smads途径存在两种状态,即基础状态和激活状态[25]

  • 在基础状态下,TGF-β家族配体不存在或作为潜在因子存在,它们被ECM或其他细胞膜的结合物隔离,使其处于静止状态,而作为受体底物的Smads蛋白在细胞质和细胞核之间连续转运,其中谱系决定转录因子(Lineage-Determining Transcrip⁃ tion Factor,LDTF),其他信号驱动转录因子(Sig⁃ nal-Dependent Transcription Factor, SDTF) 和E3泛素-蛋白质连接酶TRIM33(Tripartite Motif-con⁃ taining Protein 33,TRIM33),可能已预先绑定到基因组(见图1a)。

  • 在激活状态下,微环境中的细胞配体从潜在的复合物中释放出来且与Ⅰ型受体(TβR-Ⅰ) 和Ⅱ 型受体(TβR-Ⅱ) 直接结合,或在TGF-β、Nodal和BMP9和BMP10的辅助受体存在的情况下,与受体结合。在配体诱导受体复合物的过程中,TβR-Ⅱ激酶使TβR-Ⅰ内富含甘氨酸和丝氨酸的近膜调控区(称为GS域) 磷酸化,从而导致激酶激活下游信号分子[26]。TβR-Ⅰ特异性识别并在C末端域中磷酸化R-Smad受体,磷酸化的R-Smad与Smad4形成异源三聚体。R-Smad-Smad4复合物可以穿梭进入细胞核,它的形成对触发大多数TGF-β 家族基因反应至关重要。在细胞核中,激活的Smads复合物在LDTF和SDTF的指导下与数百个基因位点结合。Smads不仅与LDTF和SDTF相互作用,而且与染色质结合蛋白相互作用,后者可以将它们募集到染色质上,与转录的激活因子和抑制因子相互作用,调节基因转录(见图1b)。

  • 图1 TGF-β/Smad信号通路

  • 2.3 TGF-β配体

  • TGF-β 超家族由40多种配体组成,根据结构和功能将TGF-β家族配体分为:三种TGF-β 同种型、激活素、抑制素、骨形态发生蛋白(BMP)、生长和分化因子、抗缪勒氏管激素(Anti-Mulleri⁃ an Hormone,AMH)、肌肉生长抑制素等。哺乳动物细胞表达三种高度同源的TGF-β 同种型,包括TGF-β1、TGF-β2和TGF-β3,其中TGF-β2仅与 Ⅱ型和Ⅰ型受体组合相互作用。它们在体外具有相似的生物活性,但在体内具有明显不同的生物反应。BMP亚家族包括十多种因子,其功能与TGF-β亚家族一样广泛,且经常与它相反。其中研究最广泛的成员是BMP2、 BMP4、 BMP6、 BMP7、 BMP9和BMP15。

  • 2.4 Ⅰ型受体和Ⅱ型受体

  • 所有TGF-β 配体通过与Ⅰ型和Ⅱ型受体结合,在二聚体配体存在下形成异源四聚体复合物,将生物学信息传递给细胞。在哺乳动物中,TGF-β通路包括五种Ⅱ型受体(BMPRⅡ、ActRⅡ、ActRIIB、 TβRⅡ 和AMHR)、七种Ⅰ型受体(ALK1-ALK7),它具有特征性的GS结构域。ALK1、ALK2、ALK3和ALK6磷酸化激活Smad1、Smad5和Smad8,而ALK4, ALK5和ALK7磷酸化激活Smad2和Smad3[13]

  • 在没有配体的情况下,Ⅱ型和Ⅰ型受体作为同型二聚体存在于细胞表面。TGF-β1、TGF-β3在没有I型受体表达时与Ⅱ型受体具有高亲和力, BMP2、BMP4和BMP7主要结合它们的Ⅰ型受体,而Ⅰ型受体和II型受体同时表达时,Ⅱ型受体与TGF-β2具有高亲和力,其中Ⅰ型受体激酶的激活以及随后的信号传导需要异聚复合物中的Ⅱ型受体磷酸化其GS结构域,这表明Ⅱ型受体是配体特异性结合的主要决定因素,而与Ⅱ型受体二聚体结合的配体可诱导细胞质结构域自磷酸化[27, 28]

  • 3 肝硬化过程中的TGF-β通路

  • 研究表明,TGF-β是已知最强的肝纤维化诱导剂[29],它主要通过活化的HSCs来介导促进肝纤维化,而活化的HSCs是肝纤维化过程中ECM的主要产生者[30]。TGF-β几乎参与了肝纤维化的每一个过程,如炎症、组织再生和纤维化。其中TGF-β 小的分泌亚型TGF-β1在ECM过度沉积区域过度表达,且已经证明TGF-β 在肝纤维化中发挥了重要作用[31],如发育、细胞生长、分化、细胞粘附、迁移、ECM沉积和免疫反应。TGF-β1刺激HSCs活化,而活化的HSCs可以正反馈作用于TGF-β1促进分泌ECM,此外TGF-β1还可以通过调节基因的表达,抑制ECM的降解,导致胶原过度沉积,加速肝纤维化的发展。此外,TGF-β1诱导的细胞凋亡被认为是肝硬化中组织丢失和肝脏体积减小的原因[32]

  • 3.1 体内的TGF-β1

  • 在肝纤维化和肝硬化的患者中可以检测到高表达的TGF-β1[33, 34]。将外源性的TGF-β1靶向表达于大鼠的肝脏,可见转基因大鼠明显的肝纤维化,而其纤维化的严重程度取决于TGF-β1的表达,其中还包括出血、血栓的形成以及干细胞的凋亡,肝脏质量的降低[35]

  • 3.2 体外的TGF-β1

  • 研究表明TGF-β 可以通过刺激脂肪变性的肝细胞释放LDH从而诱导肝细胞死亡。调低体外培养的肝脏细胞中的Smad2,培养液中的LDH含量降低,肝细胞中TGF-β 诱导的细胞死亡增加被显著抑制,这可能与形成脂肪的基因被抑制(如Dgat1、 Fas和Srebp1c) 以及 β氧化基因表达增加有关(如Ppara、Acox1、Cpt1)。

  • 4 针对肝脏TGF-β/Smad信号通路开展的临床应用

  • 肝纤维化和肝硬化可能会导致慢性肝病发展为肝癌,这造成了巨大的经济、社会负担,为了从源头解决肝脏相关疾病进展,临床治疗迫切需要有效的抗纤维化的药物。抗纤维化的药物作用机制主要包括保护肝细胞、抑制HSCs活化和形成纤维瘢痕、免疫调节等[9]。本综述中,我们主要讨论TGF-β拮抗剂在抗纤维化中的作用。

  • 4.1 抗TGF-β 抗体

  • TGF-β是组织过度到纤维化的重要介质,它作为配体启动了Smads信号通路,因此,拮抗TGF-β 功能或阻断TGF-β 合成会阻止TGF-β/Smad信号,并抑制ECM在体内外的沉积从而达到抗纤维化的治疗。早期研究表明[36],注射抗TGF-β 抗体可以抑制TGF-β 在肝脏组织中的炎性作用,在Arias等的研究中[37],运用抗TGF-β 抗体治疗(腺病毒组成的反义mRNA)能够减弱激活的HSCs中的TGF-β 的表达,这为将来的基因治疗提供了可能。

  • 4.2 阻滞TβR-Ⅰ和TβR-Ⅱ

  • 在TGF-β亚家族的Ⅰ型受体中,破坏TβR-Ⅰ生物学活性将有效地阻断TGF-β-Smad2/3信号级联[25]。例如,已证明,给予反义TβR-Ⅰ重组质粒可阻止猪血清诱导的大鼠肝纤维化的形成[38],Park等合成的ALK5抑制剂已经进入临床试验当中[39]

  • 对于Ⅱ型TGF-β 受体,可以使用腺病毒载体和无激酶活性的TβR-Ⅱ,它可以阻止HSCs中对于动脉内皮细胞、肺上皮细胞、平滑肌细胞等的TGF-β的信号传导作用,因为腺病毒载体给药后主要寄居于肝脏中,还可以增强体内肝细胞的再生作用。其次,可以施用“可溶性TGF-β受体”,该受体由剪接成嵌合IgG的TβR-Ⅱ的细胞外部分组成,可以竞争性地结合TGF-β,也可以基因敲除TβR-Ⅱ,但它可能会引起致死性炎性反应[40]

  • 4.3 上调Smad7

  • 敲除Smad7可以在体内和体外促进HSCs活化和肝纤维化[41]。一项研究认为,Smad7是microR⁃ NA-21的靶标,通过上调miR-21从而抑制HSCs中的Smad7促进了Smad蛋白的活化,继而增加胶原蛋白的表达[42]

  • Liu等表明Smad7是吡喹酮直接通过抑制TGF-β/Smad信号通路激活HSCs的靶标[42],此研究为吡喹酮临床治疗肝纤维化提供了理论基础。过表达Smad7的骨髓间充质干细胞(MSCs) 通过抑制TGF-β1-Smad信号通路可以更有效地治疗肝硬化[43, 44]。注射Smad7-MSC或MSCs后,在CCl4诱导的肝硬化大鼠中Smad2和Smad3的增强表达均降低,这表明MSC疗法也可能影响其他基因表达,从而发挥总体保护作用。干细胞移植后,肝纤维化生物标志物和组织学评分明显减轻。该大鼠模型的发现提供了第一个直接的体内证据,表明MSC-Smad7细胞疗法是预防肝硬化发展的有效方法,对未来的治疗发展具有临床意义。

  • 4.4 TGF-β/Smad3基因沉默以及其他治疗方式

  • 大多数TGF-β 的纤维化是由Smad3介导的[45],因此抑制Smad3信号传导可能是纤维化疾病干预的潜在目标。在Schnabl等[46] 的研究中,在敲除Smad3基因后,小鼠中表达I型胶原蛋白的RNA明显减少,而激活HSCs需要Smad3的表达[46]。Nakamura等[47] 发现通过腺病毒抑制TGF-β 信号通路后, HSCs的增殖不仅受到了抑制,而且“已激活”的HSCs凋亡水平显著增加。

  • 鉴于Smad3蛋白在介导纤维化疾病中起到关键的作用[48-50],阻断Smad3信号传导的治疗剂可能是抑制纤维化且副作用最小的理想选择。目前开发的TGF-β/Smad3拮抗剂已经被证明是有效的抗纤维化药物[51],如抗体、可溶性受体、小分子抑制剂和siRNA,但是上述药物可能会增加疾病的免疫炎症轴并导致炎症加重和肝等器官的损伤,这进一步限制了其临床应用。此外,由于TGF-β/Smads信号传导与其他信号通路形成串扰网络。因此抑制信号传导肯定会影响复杂的网络并导致不良的副作用,所有这些问题都需要在临床试验中充分考虑。

  • 此外,治疗干预纤维化还有很多途径,如保护肝细胞、抑制HSCs活化和纤维化疤痕的形成以及免疫调节(见表1) [9]。对纤维发生和解决的进一步了解揭示了许多潜在的抗纤维化靶标。尽管许多药物已经在临床前模型中进行了测试,且其中不少药物目前正处在人体临床试验中,但目前尚未有任何药物被FDA批准[52]。进展最远的药物包括CCR2-CCR5拮抗剂、半乳糖3抑制剂、半胱天冬酶抑制剂、ASK1抑制剂、FXR激动剂和含有siRNA的维生素A偶联脂质纳米颗粒(见表1)。除此之外,还有许多药物在抗肝纤维化中有抗炎作用,我们需要不断完善研究,了解肝纤维化机制,为患者提供更好更有效的选择。抗纤维化疗法可能在未来十年内成为现实。

  • 表1 肝纤维化目前使用的药物及其原理

  • 5 小结与展望

  • 尽管原发性肝损伤的机制不同,但纤维化肝病的进展遵循主要肝病病因的共同模式。对于所有病因,肝纤维化的发展都是从响应肝细胞损伤开始的,而其进展主要是由失调的炎症过程驱动的。炎症的重复高发、抗炎、修复性免疫反应,这一过程激活产生胶原蛋白的肌成纤维细胞,导致ECM过度积累。但去除或消除最初的触发因素(如病毒治愈) 可能会减缓或逆转肝纤维化。靶向TGF-β 信号可能代表了一种新的肝病治疗策略。虽然许多抗纤维化候选药物在实验动物模型中显示出强大的作用,但它们在临床试验中的抗纤维化作用尚不清楚,因此需要更多的临床研究来证实这些发现,最终实现肝脏纤维化消退。

  • 参考文献

    • [1] LLOVET J,ZUCMAN-ROSSI J,PIKARSKY E,et al.Hepatocellular carcinoma[J].Nature reviews Disease primers,2016,2:16018.

    • [2] MARCELLIN P,KUTALA B K.Liver diseases:a major,neglected global public health problem requiring urgent actions and large-scale screening[J].Liver International,2018,38(S1):2-6.

    • [3] ASRANI S K,DEVARBHAVI H,EATON J,et al.Burden of liver diseases in the world[J].Journal of hepatology,2019,70(1):151-171.

    • [4] HERMANSYAH D,PUTRA A,MUHAR A,et al.Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis[J].Med Arch,2021,75(1):16-22.

    • [5] HU Y P,HE J,HE L H,et al.Expression and function of Smad7 in autoimmune and inflammatory diseases[J].Journal of molecular medicine,2021,99:1209-1220.

    • [6] ELPEK G Ö.Cellular and molecular mechanisms in the pathogenesis of liver fibrosis:an update[J].World J Gastroenterol,2014,20(23):7260-7276.

    • [7] LI H,LAN J,HAN C,et al.Brg1 promotes liver fibrosis via activation of hepatic stellate cells[J].Exp Cell Res,2018,364(2):191-197.

    • [8] AFFO S,YU L X,SCHWABE R F.The role of cancerassociated fibroblasts and fibrosis in liver cancer[J].Annu rev pathol,2017,12:153-186.

    • [9] ROEHLEN N,CROUCHET E,BAUMERT T F.Liver fibrosis:mechanistic concepts and therapeutic perspectives [J].Cells,2020,9(4):875.

    • [10] ALI A,WANG Z,FU J J,et al.Differential regulation of the REGγ-proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells[J].Nature Communications,2013,4:2667.

    • [11] DIJKE P T,DAM H V.14-3-3ζ turns TGF-β to the dark side[J].Cancer Cell,2015,27(2):151-153.

    • [12] PATIL A S,SABLE R B,KOTHARI R M.An update on transforming growth factor-β(TGF-β):sources,types,functions and clinical applicability for cartilage/bone healing[J].Journal of Cellular Physiology,2011,226(12):3094-3103.

    • [13] DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.

    • [14] DI GREGORIO J,ROBUFFO I,SPALLETTA S,et al.The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders[J].Front cell Dev Biol,2020,8:607483.

    • [15] WOSIAK A,WODZIŃSKI D,MICHALSKA K,et al.Assessment of the role of selected SMAD3 and SMAD4 genes polymorphisms in the development of colorectal cancer:preliminary research[J].Pharmacogenomics and Pers Med,2021,14:167-178.

    • [16] SIEGEL P M,MASSAGUÉ J.Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer[J].Nat Rev Cancer,2003,3(11):807-821.

    • [17] KORPAL M,KANG Y B.Targeting the transforming growth factor-β signalling pathway in metastatic cancer [J].Eur J,2010,46(7):1232-1240.

    • [18] GADALETA R M,ERPECUM K J V,OLDENBURG B,et al.Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J].Gut,2011,60(4):463-472.

    • [19] XIAO K,YANG L,XIE W,et al.Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGFβ/BMP expression levels[J].Exp Ther Med,2021,22(1):736.

    • [20] SANADA T J,SUN X Q,HAPPÉ C,et al.Altered TGFβ/SMAD signaling in human and rat models of pulmonary hypertension:an old target needs attention[J].Cells,2021,10(1):84.

    • [21] DERYNCK R,AKHURST R J-BAT MAIN A,et al.TGF-β signaling in tumor suppression and cancer progression [J].Nature Genetics,2001,29:117-129.

    • [22] YANG L,ROH Y S,SONG J Y,et al.Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice[J].Hepatology,2014,59(2):483-495.

    • [23] TU X L,ZHENG X X,LI H N,et al.MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J].Toxicological Sciences,2015,146(1):157-169.

    • [24] YU F J,GUO Y,CHEN B C,et al.MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7 [J].Laboratory Investigation.2015,95(7):781-789.

    • [25] DAVID C J,MASSAGUÉ J,et al.Contextual determinants of TGFβ action in development,immunity and cancer[J].Nature reviews Molecular cell biology,2018,19(7):419-435.

    • [26] SEOANE J,GOMIS R R,et al.TGF-β family signaling in tumor suppression and cancer progression[J].Cold Spring Harbor Perspectives in Biology,2017,9(12):a022277

    • [27] DERYNCKR,FENG X H.TGF-beta receptor signaling[J].Biochim Et Biophys Acta,1997,1333(2):105-150.

    • [28] DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.

    • [29] DEWIDAR B,MEYER C,DOOLEY S,et al.TGF-β in hepatic stellate cell activation and liver fibrogenesis— updated 2019[J].Cells,2019,8(11):149.

    • [30] FABREGAT I,MCRENO-CACERES J,SANCHEZA,et al.TGF-beta signalling and liver disease[J].FEBS J,2016,283(12):2219-2232.

    • [31] SISTO M,RIBATTI D,LISI S.SMADS-mediate molecular mechanisms in sjögren's Syndrome[J].Int J of Molecular SCI,2021,22(6):3203.

    • [32] ZHOU W C,ZHANG Q B,QIAO L.Pathogenesis of liver cirrhosis[J].World J Gastroenterol,2014,20(23):7312-7324.

    • [33] CHEN W X,LI Y M,YU C H,et al.Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease[J].World J Gastroenterol,2002,8(2):379-381.

    • [34] TAKIYA S,TAGAYA T,TAKAHASHI K,et al.Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases[J].Journal of Clinical Pathology,1995,48(12):1093-1097.

    • [35] CLOUTHIER D E,COMERFORD S A,HAMMER R E.Hepatic fibrosis,glomerulosclerosis,and lipodystrophylike PEPCK-TGF-beta-1 transgenic mice[J].Journal of Clinical Investigation,1998,100(11):2697-2713.

    • [36] BORDER W A,NOBLE N A.Transforming growth factor beta in tissue fibrosis[J].The New England Journal of Medicine,1994,331(19):1286-1292.

    • [37] ARIAS M,LAHME B,VAN D L E,et al.Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells[J].Cell Growth & Differentiation the Molecular Biology Journal of the American Association for Cancer Research,2002,13(6):265-273.

    • [38] WEI J,YANG C Q,LIU W B,et al.Blockage of transforming growth factor β receptors prevents progression of pig serum-induced rat liver fibrosis[J].World J Gastroenterol,2004,10(11):1634-1638.

    • [39] PARK M,PARK H,AN Y,et al.Synthesis,biological evaluation and molecular modelling of 2,4-disubstituted5-(6-alkylpyridin-2-yl)-1H-imidazoles as ALK5 inhibitors [J].Journal of Enzyme Inhibition and Medicinal Chemistry,2020,35(1):702-712.

    • [40] BIOULAC-SAGE P,LAUMONIER H,CUBEL G,et al.Hepatic resection for inflammatory hepatocellular adenomas:pathological identification of micronodules expressing inflammatory proteins[J].Liver Int,2010,30(1):149-154.

    • [41] FENG T,DZIERAN J,GU X et al.Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma[J].Clinical Science,2015,128(11):761-774.

    • [42] LIU J F,KONG D L,QIU J F,et al.Praziquantel ameliorates CCl-induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells[J].Br J Pharmacol,2019,176(24):4666-4680.

    • [43] TAN R P,CHAN A H P,LENNARTSSON K,et al.Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis[J].Stem Cell Res Ther,2018,9(1):70.

    • [44] SU D,WU S,XU S.Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis[J].Stem Cell Res Ther,2020,11(1):395.

    • [45] XU F Y,LIU C W,ZHOU D D,et al.TGF/SMAD pathways and its regulation in hepatic fibrosis[J].J Histochem Cytochem,2016,64(3):157-167.

    • [46] ROBERTS A B,RUSSO A,FELICI A.Smad3:a key player in pathogenetic mechanisms dependent on TGF-β [J].Ann NY Aca Sci,2003,995:1-10.

    • [47] NAKAMURA T,SAKATA R,UENO T,et al.Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats[J].Hepatology,2000,32(2):247-255.

    • [48] ZHOU Y,WU R,CAI F F,et al.Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology and transcriptomic analysis[J].J Ethnopharmacol,2021,264:113021.

    • [49] WU S W,LIU L C,YANG S,et al.Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling[J].Immunopharmacology and immunotoxicology,2019,41(3):438-445.

    • [50] CHEN Y J,LI R F,HU N,et al.Baihe Wuyao decoction ameliorates CCl4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling,anti-inflammation and anti-oxidation effects[J].J Ethnopharmacol,2020,263:113227.

    • [51] LIU X J,HAN H,YIN J Q.Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis[J].Liver International,2006,26(1):8-22.

    • [52] BANSAL M B,CHAMROONKUL N.Antifibrotics in liver disease:are we getting closer to clinical use?[J].Hepatol Int,2019,13(1):25-39.

    • [53] HARRISON S A,GOODMAN Z,JABBAR A,et al.A randomized,placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis[J].J Hepatol 2019,72(5):816-827.

    • [54] SHIFFMAN M,FREILICH B,WPPALANCHI R,et al.Randomised clinical trial:emricasan versus placebo significantly decreases ALT and caspase activation in subjects with non-alcoholic fatty liver disease[J].Alimentary Pharmacology & Therapeutics,2019,49(1):64-73.

    • [55] LOOMBA R,LAWITZ E,MANTRY P S,et al.The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis:a randomized,phase 2 trial[J].Hepatology,2018,67(2):549-559.

    • [56] FAGHIHZADEH F,ADIBI P,RAFIEI R,et al.Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease[J].Nut Res,2014,34(10):837-843.

    • [57] HEEBØLL S,KREUZFELDT M,HAMILTON-DUTOIT S,et al.Placebo-controlled,randomised clinical trial:high-dose resveratrol treatment for non-alcoholic fatty liver disease[J].Scand J Gastroenterol,2016,51(4):456-464.

    • [58] NEUSCJWANDER B A,LOOMBA R,SANYAL A J,et al.Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic,non-alcoholic steatohepatitis(FLINT):a multicentre,randomised,placebo-controlled trial[J].Lancet,2015,385(9972):956-965.

    • [59] MUDALIAR S,HENRY R R,SANYAL A J,et al.Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease[J].Gastroenterology,2013,145(3):574-582,el.

    • [60] HARRISON S A,ABDELMALEK M F,GALDWELL S,et al.Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis[J].Gastroenterology,2018,155(4):1140-1153.

    • [61] FRIEDMAN S,RATZIU V,HARRISON S A,et al.A randomized,placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J].Hepatology,2018,67(5):1754-1764.

    • [62] RATZIU V,SANYAL A,HARRISON S A,et al.Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis:final analysis of the phase 2b CENTAUR study[J].Hepatology,2020,72(3):892-905

  • 参考文献

    • [1] LLOVET J,ZUCMAN-ROSSI J,PIKARSKY E,et al.Hepatocellular carcinoma[J].Nature reviews Disease primers,2016,2:16018.

    • [2] MARCELLIN P,KUTALA B K.Liver diseases:a major,neglected global public health problem requiring urgent actions and large-scale screening[J].Liver International,2018,38(S1):2-6.

    • [3] ASRANI S K,DEVARBHAVI H,EATON J,et al.Burden of liver diseases in the world[J].Journal of hepatology,2019,70(1):151-171.

    • [4] HERMANSYAH D,PUTRA A,MUHAR A,et al.Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis[J].Med Arch,2021,75(1):16-22.

    • [5] HU Y P,HE J,HE L H,et al.Expression and function of Smad7 in autoimmune and inflammatory diseases[J].Journal of molecular medicine,2021,99:1209-1220.

    • [6] ELPEK G Ö.Cellular and molecular mechanisms in the pathogenesis of liver fibrosis:an update[J].World J Gastroenterol,2014,20(23):7260-7276.

    • [7] LI H,LAN J,HAN C,et al.Brg1 promotes liver fibrosis via activation of hepatic stellate cells[J].Exp Cell Res,2018,364(2):191-197.

    • [8] AFFO S,YU L X,SCHWABE R F.The role of cancerassociated fibroblasts and fibrosis in liver cancer[J].Annu rev pathol,2017,12:153-186.

    • [9] ROEHLEN N,CROUCHET E,BAUMERT T F.Liver fibrosis:mechanistic concepts and therapeutic perspectives [J].Cells,2020,9(4):875.

    • [10] ALI A,WANG Z,FU J J,et al.Differential regulation of the REGγ-proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells[J].Nature Communications,2013,4:2667.

    • [11] DIJKE P T,DAM H V.14-3-3ζ turns TGF-β to the dark side[J].Cancer Cell,2015,27(2):151-153.

    • [12] PATIL A S,SABLE R B,KOTHARI R M.An update on transforming growth factor-β(TGF-β):sources,types,functions and clinical applicability for cartilage/bone healing[J].Journal of Cellular Physiology,2011,226(12):3094-3103.

    • [13] DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.

    • [14] DI GREGORIO J,ROBUFFO I,SPALLETTA S,et al.The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders[J].Front cell Dev Biol,2020,8:607483.

    • [15] WOSIAK A,WODZIŃSKI D,MICHALSKA K,et al.Assessment of the role of selected SMAD3 and SMAD4 genes polymorphisms in the development of colorectal cancer:preliminary research[J].Pharmacogenomics and Pers Med,2021,14:167-178.

    • [16] SIEGEL P M,MASSAGUÉ J.Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer[J].Nat Rev Cancer,2003,3(11):807-821.

    • [17] KORPAL M,KANG Y B.Targeting the transforming growth factor-β signalling pathway in metastatic cancer [J].Eur J,2010,46(7):1232-1240.

    • [18] GADALETA R M,ERPECUM K J V,OLDENBURG B,et al.Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J].Gut,2011,60(4):463-472.

    • [19] XIAO K,YANG L,XIE W,et al.Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGFβ/BMP expression levels[J].Exp Ther Med,2021,22(1):736.

    • [20] SANADA T J,SUN X Q,HAPPÉ C,et al.Altered TGFβ/SMAD signaling in human and rat models of pulmonary hypertension:an old target needs attention[J].Cells,2021,10(1):84.

    • [21] DERYNCK R,AKHURST R J-BAT MAIN A,et al.TGF-β signaling in tumor suppression and cancer progression [J].Nature Genetics,2001,29:117-129.

    • [22] YANG L,ROH Y S,SONG J Y,et al.Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice[J].Hepatology,2014,59(2):483-495.

    • [23] TU X L,ZHENG X X,LI H N,et al.MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells[J].Toxicological Sciences,2015,146(1):157-169.

    • [24] YU F J,GUO Y,CHEN B C,et al.MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7 [J].Laboratory Investigation.2015,95(7):781-789.

    • [25] DAVID C J,MASSAGUÉ J,et al.Contextual determinants of TGFβ action in development,immunity and cancer[J].Nature reviews Molecular cell biology,2018,19(7):419-435.

    • [26] SEOANE J,GOMIS R R,et al.TGF-β family signaling in tumor suppression and cancer progression[J].Cold Spring Harbor Perspectives in Biology,2017,9(12):a022277

    • [27] DERYNCKR,FENG X H.TGF-beta receptor signaling[J].Biochim Et Biophys Acta,1997,1333(2):105-150.

    • [28] DERYNCK R,ZHANG Y E.Smad-dependent and Smadindependent pathways in TGF-beta family signalling[J].Nature,2003,425(6958):577-584.

    • [29] DEWIDAR B,MEYER C,DOOLEY S,et al.TGF-β in hepatic stellate cell activation and liver fibrogenesis— updated 2019[J].Cells,2019,8(11):149.

    • [30] FABREGAT I,MCRENO-CACERES J,SANCHEZA,et al.TGF-beta signalling and liver disease[J].FEBS J,2016,283(12):2219-2232.

    • [31] SISTO M,RIBATTI D,LISI S.SMADS-mediate molecular mechanisms in sjögren's Syndrome[J].Int J of Molecular SCI,2021,22(6):3203.

    • [32] ZHOU W C,ZHANG Q B,QIAO L.Pathogenesis of liver cirrhosis[J].World J Gastroenterol,2014,20(23):7312-7324.

    • [33] CHEN W X,LI Y M,YU C H,et al.Quantitative analysis of transforming growth factor beta 1 mRNA in patients with alcoholic liver disease[J].World J Gastroenterol,2002,8(2):379-381.

    • [34] TAKIYA S,TAGAYA T,TAKAHASHI K,et al.Role of transforming growth factor beta 1 on hepatic regeneration and apoptosis in liver diseases[J].Journal of Clinical Pathology,1995,48(12):1093-1097.

    • [35] CLOUTHIER D E,COMERFORD S A,HAMMER R E.Hepatic fibrosis,glomerulosclerosis,and lipodystrophylike PEPCK-TGF-beta-1 transgenic mice[J].Journal of Clinical Investigation,1998,100(11):2697-2713.

    • [36] BORDER W A,NOBLE N A.Transforming growth factor beta in tissue fibrosis[J].The New England Journal of Medicine,1994,331(19):1286-1292.

    • [37] ARIAS M,LAHME B,VAN D L E,et al.Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells[J].Cell Growth & Differentiation the Molecular Biology Journal of the American Association for Cancer Research,2002,13(6):265-273.

    • [38] WEI J,YANG C Q,LIU W B,et al.Blockage of transforming growth factor β receptors prevents progression of pig serum-induced rat liver fibrosis[J].World J Gastroenterol,2004,10(11):1634-1638.

    • [39] PARK M,PARK H,AN Y,et al.Synthesis,biological evaluation and molecular modelling of 2,4-disubstituted5-(6-alkylpyridin-2-yl)-1H-imidazoles as ALK5 inhibitors [J].Journal of Enzyme Inhibition and Medicinal Chemistry,2020,35(1):702-712.

    • [40] BIOULAC-SAGE P,LAUMONIER H,CUBEL G,et al.Hepatic resection for inflammatory hepatocellular adenomas:pathological identification of micronodules expressing inflammatory proteins[J].Liver Int,2010,30(1):149-154.

    • [41] FENG T,DZIERAN J,GU X et al.Smad7 regulates compensatory hepatocyte proliferation in damaged mouse liver and positively relates to better clinical outcome in human hepatocellular carcinoma[J].Clinical Science,2015,128(11):761-774.

    • [42] LIU J F,KONG D L,QIU J F,et al.Praziquantel ameliorates CCl-induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells[J].Br J Pharmacol,2019,176(24):4666-4680.

    • [43] TAN R P,CHAN A H P,LENNARTSSON K,et al.Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis[J].Stem Cell Res Ther,2018,9(1):70.

    • [44] SU D,WU S,XU S.Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis[J].Stem Cell Res Ther,2020,11(1):395.

    • [45] XU F Y,LIU C W,ZHOU D D,et al.TGF/SMAD pathways and its regulation in hepatic fibrosis[J].J Histochem Cytochem,2016,64(3):157-167.

    • [46] ROBERTS A B,RUSSO A,FELICI A.Smad3:a key player in pathogenetic mechanisms dependent on TGF-β [J].Ann NY Aca Sci,2003,995:1-10.

    • [47] NAKAMURA T,SAKATA R,UENO T,et al.Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats[J].Hepatology,2000,32(2):247-255.

    • [48] ZHOU Y,WU R,CAI F F,et al.Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology and transcriptomic analysis[J].J Ethnopharmacol,2021,264:113021.

    • [49] WU S W,LIU L C,YANG S,et al.Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling[J].Immunopharmacology and immunotoxicology,2019,41(3):438-445.

    • [50] CHEN Y J,LI R F,HU N,et al.Baihe Wuyao decoction ameliorates CCl4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling,anti-inflammation and anti-oxidation effects[J].J Ethnopharmacol,2020,263:113227.

    • [51] LIU X J,HAN H,YIN J Q.Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis[J].Liver International,2006,26(1):8-22.

    • [52] BANSAL M B,CHAMROONKUL N.Antifibrotics in liver disease:are we getting closer to clinical use?[J].Hepatol Int,2019,13(1):25-39.

    • [53] HARRISON S A,GOODMAN Z,JABBAR A,et al.A randomized,placebo-controlled trial of emricasan in patients with NASH and F1-F3 fibrosis[J].J Hepatol 2019,72(5):816-827.

    • [54] SHIFFMAN M,FREILICH B,WPPALANCHI R,et al.Randomised clinical trial:emricasan versus placebo significantly decreases ALT and caspase activation in subjects with non-alcoholic fatty liver disease[J].Alimentary Pharmacology & Therapeutics,2019,49(1):64-73.

    • [55] LOOMBA R,LAWITZ E,MANTRY P S,et al.The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis:a randomized,phase 2 trial[J].Hepatology,2018,67(2):549-559.

    • [56] FAGHIHZADEH F,ADIBI P,RAFIEI R,et al.Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease[J].Nut Res,2014,34(10):837-843.

    • [57] HEEBØLL S,KREUZFELDT M,HAMILTON-DUTOIT S,et al.Placebo-controlled,randomised clinical trial:high-dose resveratrol treatment for non-alcoholic fatty liver disease[J].Scand J Gastroenterol,2016,51(4):456-464.

    • [58] NEUSCJWANDER B A,LOOMBA R,SANYAL A J,et al.Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic,non-alcoholic steatohepatitis(FLINT):a multicentre,randomised,placebo-controlled trial[J].Lancet,2015,385(9972):956-965.

    • [59] MUDALIAR S,HENRY R R,SANYAL A J,et al.Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease[J].Gastroenterology,2013,145(3):574-582,el.

    • [60] HARRISON S A,ABDELMALEK M F,GALDWELL S,et al.Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis[J].Gastroenterology,2018,155(4):1140-1153.

    • [61] FRIEDMAN S,RATZIU V,HARRISON S A,et al.A randomized,placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J].Hepatology,2018,67(5):1754-1764.

    • [62] RATZIU V,SANYAL A,HARRISON S A,et al.Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis:final analysis of the phase 2b CENTAUR study[J].Hepatology,2020,72(3):892-905

  • 关闭