肿瘤免疫微环境与治疗互作的机制研究进展
CSTR:
作者:
作者单位:

中山大学生命科学学院,广东 广州 510275

中图分类号:

R730.3

基金项目:

国家杰出青年科学基金项目 (82025016);国家自然科学基金专项项目 (82341014)


Research progress on the mechanisms of tumor immune microenvironment and therapeutic interactions
Author:
Affiliation:

School of Life Sciences, Sun Yat-sen University, Guangzhou 510275 , Guangdong, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    肿瘤免疫微环境在肿瘤的发生和发展过程中扮演着关键角色,并与治疗的长期有效性密切相关。值得注意的是,除了受微环境影响,治疗的同时也会反过来主动塑造微环境的构成。近年来,借助单细胞测序等新兴技术,各种治疗手段与免疫微环境之间的相互作用以及其对治疗效果的影响在多种肿瘤中得到揭示。本文综述了原发性肿瘤免疫微环境对肿瘤疗效的影响,介绍了不同治疗方式对微环境的重塑情况,并探讨了继发性免疫微环境与肿瘤相互作用的复杂调节机制对最终治疗结局的影响。厘清肿瘤免疫微环境与治疗互作的机制对治疗效果的监控和预测,以及更优化治疗方案的制定具有重要意义。

    Abstract:

    The tumor immune microenvironment plays a crucial role in the initiation and progression of tumors, and is closely related to the long-term effectiveness of treatments. Notably, while being influenced by the microenvironment, treatment can also actively reshape the composition of the microenvironment. In recent years, with the help of emerging technologies such as single-cell sequencing, the interactions between various therapeutic approaches and the immune microenvironment, as well as their impact on therapeutic efficacy, have been revealed in various tumors. This review summarizes the impact of primary tumor immune microenvironments on therapeutic efficacy, introduces the remodeling of microenvironment by different therapeutic approaches, and explores the intricate regulatory mechanisms governing secondary immune microenvironments' interactions with tumors and their implications on treatment outcomes. Clarifying the mechanisms of interactions between the tumor immune microenvironment and treatments has profound implications for monitoring and predicting treatment outcomes, as well as for optimizing cancer therapy.

    参考文献
    [1] QUAIL D F,JOYCE J A.Microenvironmental regulation of tumor progression and metastasis[J].Nat Med,2013,19(11):1423-1437.
    [2] JUNTTILA M R,DE SAUVAGE F J.Influence of tumour micro-environment heterogeneity on therapeutic response [J].Nature,2013,501(7467):346-354.
    [3] MCMILLIN D W,NEGRI J M,MITSIADES C S.The role of tumour-stromal interactions in modifying drug response:Challenges and opportunities[J].Nat Rev Drug Discov,2013,12(3):217-228.
    [4] HANAHAN D.Hallmarks of cancer:New dimensions[J].Cancer Discov,2022,12(1):31-46.
    [5] BINNEWIES M,ROBERTS E W,KERSTEN K,et al.Understanding the tumor immune microenvironment(TIME)for effective therapy[J].Nat Med,2018,24(5):541-550.
    [6] WALDMAN A D,FRITZ J M,LENARDO M J.A guide to cancer immunotherapy:From T cell basic science to clinical practice[J].Nat Rev Immunol,2020,20(11):651-668.
    [7] LIAO P,WANG W,WANG W,et al.CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J].Cancer Cell,2022,40(4):365-378.
    [8] ZHOU Z,HE H,WANG K,et al.Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J].Science,2020,368(6494):eaaz7548.
    [9] EDWARDS J,WILMOTT J S,MADORE J,et al.CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-na?ve melanoma patients and expand significantly during anti-PD-1 treatment[J].Clin Cancer Res,2018,24(13):3036-3045.
    [10] ZOU W,GREEN D R.Beggars banquet:Metabolism in the tumor immune microenvironment and cancer therapy [J].Cell Metab,2023,35(7):1101-1113.
    [11] MOROTTI M,GRIMM A J,HOPE H C,et al.PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function[J].Nature,2024,629(8011):426-434.
    [12] LACHER S B,D?RR J,DE ALMEIDA G P,et al.PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells[J].Nature,2024,629(8011):417-425.
    [13] LU C,RONG D,ZHANG B,et al.Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma:Challenges and opportunities[J].Mol Cancer,2019,18(1):130.
    [14] LI J,WANG W,ZHANG Y,et al.Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy[J].J Clin Invest,2020,130(5):2712-2726.
    [15] ZHU Y,ZHAO Y,WEN J,et al.Targeting the chromatin effector Pygo2 promotes cytotoxic T cell responses and overcomes immunotherapy resistance in prostate cancer [J].Sci Immunol,2023,8(81):eade4656.
    [16] KUANG D M,PENG C,ZHAO Q,et al.Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells[J].Hepatology,2010,51(1):154-164.
    [17] KUANG D M,XIAO X,ZHAO Q,et al.B7-H1-expressing antigenpresenting cells mediate polarization of protumorigenic Th22 subsets[J].J Clin Invest,2014,124(10):4657-4667.
    [18] CHEN M M,XIAO X,LAO X M,et al.Polarization of tissue-resident TFH-like cells in human hepatoma bridges innate monocyte inflammation and M2b macrophage polarization[J].Cancer Discov,2016,6(10):1182-1195.
    [19] ESCHWEILER S,CLARKE J,RAMíREZ-SUáSTEGUI C,et al.Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy[J].Nat Immunol,2021,22(8):1052-1063.
    [20] FRIDMAN W H,MEYLAN M,PETITPREZ F,et al.B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome[J].Nat Rev Clin Oncol,2022,19(7):441-457.
    [21] HU C,YOU W,KONG D,et al.Tertiary lymphoid structure-associated B cells enhance CXCL13+ CD103+ CD8+ tissue-resident memory T-cell response to programmed cell death protein 1 blockade in cancer immunotherapy [J].Gastroenterology,2024,166(6):1069-1084.
    [22] CABRITA R,LAUSS M,SANNA A,et al.Tertiary lymphoid structures improve immunotherapy and survival in melanoma[J].Nature,2020,577:561-565.
    [23] HELMINK B A,REDDY S M,GAO J,et al.B cells and tertiary lymphoid structures promote immunotherapy response[J].Nature,2020,577(7791):549-555.
    [24] XIAO X,LAO X M,CHEN M M,et al.PD-1hi Identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression[J].Cancer Discov,2016,6(5):546-559.
    [25] WANG Z,LU Z,LIN S,et al.Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion[J].Immunity,2022,55(6):1067-1081.
    [26] WEI Y,LAO X M,XIAO X,et al.Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice[J].Gastroenterology,2019,156(6):1890-1904.
    [27] CHEN Z,ZHANG G,REN X,et al.Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer[J].Cancer Res,2023,83(21):3544-3561.
    [28] GOSWAMI S,ANANDHAN S,RAYCHAUDHURI D,et al.Myeloid cell-targeted therapies for solid tumours[J].Nat Rev Immunol,2023,23(2):106-120.
    [29] CHEN D P,NING W R,JIANG Z Z,et al.Glycolytic activation of peritumoral monocytes fosters immune privilege via the PFKFB3-PD-L1 axis in human hepatocellular carcinoma[J].J Hepatol,2019,71(2):333-343.
    [30] YANG F,AKHTAR M N,ZHANG D,et al.An immunosuppressive vascular niche drives macrophage polarization and immunotherapy resistance in glioblastoma [J].Sci Adv,2024,10(9):eadj4678.
    [31] WEI Y,ZHAO Q,GAO Z,et al.The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy[J].J Clin Invest,2019,129(8):3347-3360.
    [32] WANG J C,CHEN D P,LU S X,et al.PIM2 expression induced by proinflammatory macrophages suppresses immunotherapy efficacy in hepatocellular carcinoma[J].Cancer Res,2022,82(18):3307-3320.
    [33] YU J,GREEN M D,LI S,et al.Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J].Nat Med,2021,27(1):152-164.
    [34] CHOW A,SCHAD S,GREEN M D,et al.Tim-4+ cavityresident macrophages impair anti-tumor CD8+ T cell immunity[J].Cancer Cell,2021,39(7):973-988.
    [35] SHAUL M E,FRIDLENDER Z G.Tumour-associated neutrophils in patients with cancer[J].Nat Rev Clin Oncol,2019,16(10):601-620.
    [36] YANG L Y,LUO Q,LU L,et al.Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response[J].J Hematol Oncol,2020,13(1):3.
    [37] KIM C G,KIM C,YOON S E,et al.Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma[J].J Hepatol,2021,74(2):350-359.
    [38] WU Y,MA J,YANG X,et al.Neutrophil profiling illuminates anti-tumor antigen-presenting potency[J].Cell,2024,187(6):1422-1439.
    [39] HIRSCHHORN D,BUDHU S,KRAEHENBUEHL L,etal.T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants[J].Cell,2023,186(7):1432-1447.e17.
    [40] PICKUP M W,MOUW J K,WEAVER V M.The extracellular matrix modulates the hallmarks of cancer[J].EMBO Rep,2014,15(12):1243-1253.
    [41] VALKENBURG K C,DE GROOT A E,PIENTA K J.Targeting the tumour stroma to improve cancer therapy [J].Nat Rev Clin Oncol,2018,15(6):366-381.
    [42] ROSSI SEBASTIANO M,POZZATO C,SALIAKOURA M,et al.ACSL3-PAI-1 signaling axis mediates tumorstroma cross-talk promoting pancreatic cancer progression [J].Sci Adv,2020,6(44):eabb9200.
    [43] BUCK M D,SOWELL R T,KAECH S M,et al.Metabolic instruction of immunity[J].Cell,2017,169(4):570-586.
    [44] ZHANG J J,LI J H,HOU Y Q,et al.Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor[J/OL].Cell,2024,S0092-8674(24)00448-3.[2024-05-13].https://www.sciencedirect.com/science/article/pii/S0092867424004483?via%3Dihub.
    [45] WANG-GILLAM A,LIM K H,MCWILLIAMS R,et al.Defactinib,pembrolizumab,and gemcitabine in patients with advanced treatment refractory pancreatic cancer:A phase I dose escalation and expansion study[J].Clin Cancer Res,2022,28(24):5254-5262.
    [46] MARIATHASAN S,TURLEY S J,NICKLES D,et al.TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J].Nature,2018,554(7693):544-548.
    [47] TAURIELLO D V F,SANCHO E,BATLLE E.Overcoming TGFβ-mediated immune evasion in cancer[J].Nat Rev Cancer,2022,22(1):25-44.
    [48] PINATO D J,MURRAY S M,FORNER A,et al.Transarterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma:implications for immunotherapy[J].J Immunother Cancer,2021,9(9):e003311.
    [49] MCLAUGHLIN M,PATIN E C,PEDERSEN M,et al.Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J].Nat Rev Cancer,2020,20(4):203-217.
    [50] DIAMOND J M,VANPOUILLE-BOX C,SPADA S,et al.Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs[J].Cancer Immunol Res,2018,6(8):910-920.
    [51] LV J,WEI Y,YIN J H,et al.The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment[J].Nat Med,2023,29(6):1424-1436.
    [52] LU Y,ZHAO Q,LIAO J Y,et al.Complement signals determine opposite effects of B cells in chemotherapyinduced immunity[J].Cell,2020,180(6):1081-1097.
    [53] OYOSHI H,DU J,SAKAI S A,et al.Comprehensive single-cell analysis demonstrates radiotherapy-induced infiltration of macrophages expressing immunosuppressive genes into tumor in esophageal squamous cell carcinoma[J].Sci Adv,2023,9(50):eadh9069.
    [54] MONDINI M,LOYHER P L,HAMON P,et al.CCR2-dependent recruitment of tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance [J].Cancer Immunol Res,2019,7(3):376-387.
    [55] GANESAN R,BHASIN S S,BAKHTIARY M,et al.Taxane chemotherapy induces stromal injury that leads to breast cancer dormancy escape[J].PLoS Biol,2023,21(9):e3002275.
    [56] CAO T,ZHANG W,WANG Q,et al.Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells[J].Cell,2024,187(9):2288-2304.
    [57] ALIZADEH D,TRAD M,HANKE N T,et al.Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer[J].Cancer Res,2014,74(1):104-118.
    [58] OBRADOVIC A,AGER C,TURUNEN M,et al.Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators[J].Cancer Cell,2023,41(5):933-949.
    [59] SCHAER D A,GEEGANAGE S,AMALADAS N,et al.The folate pathway inhibitor pemetrexed pleiotropically enhances effects of cancer immunotherapy[J].Clin Cancer Res,2019,25(23):7175-7188.
    [60] GUO S,YAO Y,TANG Y,et al.Radiation-induced tumor immune microenvironments and potential targets for combination therapy[J].Signal Transduct Target Ther,2023,8(1):205.
    [61] STARY V,WOLF B,UNTERLEUTHNER D,et al.Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer[J].J Immunother Cancer,2020,8(2):e000667.
    [62] CAO Y,LANGER R,FERRARA N.Targeting angiogenesis in oncology,ophthalmology and beyond[J].Nat Rev Drug Discov,2023,22(6):476-495.
    [63] AUGUSTIN H G,KOH G Y.Antiangiogenesis:Vessel regression,vessel normalization,or both?[J].Cancer Res,2022,82(1):15-17.
    [64] LIU Z L,CHEN H H,ZHENG L L,et al.Angiogenic signaling pathways and anti-angiogenic therapy for cancer [J].Signal Transduct Target Ther,2023,8(1):198.
    [65] FUKUMURA D,KLOEPPER J,AMOOZGAR Z,et al.Enhancing cancer immunotherapy using antiangiogenics:Opportunities and challenges[J].Nat Rev Clin Oncol,2018,15(5):325-340.
    [66] COLLINS D M,O'DONOVAN N,MCGOWAN P M,et al.Trastuzumab induces antibody-dependent cell-mediated cytotoxicity in HER-2-non-amplified breast cancer cell lines[J].Ann Oncol,2012,23(7):1788-1795.
    [67] SWAIN S M,SHASTRY M,HAMILTON E.Targeting HER2-positive breast cancer:Advances and future directions [J].Nat Rev Drug Discov,2023,22(2):101-126.
    [68] PETRONI G,BUQUé A,ZITVOGEL L,et al.Immunomodulation by targeted anticancer agents[J].Cancer Cell,2021,39(3):310-345.
    [69] FANG D D,TANG Q,KONG Y,et al.MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment[J].J Immunother Cancer,2019,7(1):327.
    [70] ZHOU J,KRYCZEK I,LI S,et al.The ubiquitin ligase MDM2 sustains STAT5 stability to control T cellmediated antitumor immunity[J].Nat Immunol,2021,22(4):460-470.
    [71] HU X,BARDHAN K,PASCHALL A V,et al.Deregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer[J].J Biol Chem,2013,288(26):19103-19115.
    [72] GABRIEL S S,BON N,CHEN J,et al.Distinctive expression of Bcl-2 factors in regulatory T cells determines a pharmacological target to induce immunological tolerance[J].Front Immunol,2016,7:73.
    [73] KOHLHAPP F J,HARIBHAI D,MATHEW R,et al.Venetoclax increases intratumoral effector T cells and antitumor efficacy in combination with immune checkpoint blockade[J].Cancer Discov,2021,11(1):68-79.
    [74] YIN T,ZHAO Z B,GUO J,et al.Aurora a inhibition eliminates myeloid cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in breast cancer[J].Cancer Res,2019,79(13):3431-3444.
    [75] SUN Q,HONG Z,ZHANG C,et al.Immune checkpoint therapy for solid tumours:Clinical dilemmas and future trends[J].Signal Transduct Target Ther,2023,8(1):320.
    [76] PINTER M,JAIN R K,DUDA D G.The current landscape of immune checkpoint blockade in hepatocellular carcinoma:A review[J].JAMA Oncol,2021,7(1):113-123.
    [77] CHAMPIAT S,FERRARA R,MASSARD C,et al.Hyperprogressive disease:Recognizing a novel pattern to improve patient management[J].Nat Rev Clin Oncol,2018,15(12):748-762.
    [78] OLIVEIRA G,WU C J.Dynamics and specificities of T cells in cancer immunotherapy[J].Nat Rev Cancer,2023,23(5):295-316.
    [79] GOCHER A M,WORKMAN C J,VIGNALI D A A.Interferon-γ:Teammate or opponent in the tumour microenvironment?[J].Nat Rev Immunol,2022,22(3):158-172.
    [80] WANG W,GREEN M,CHOI J E,et al.CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy [J].Nature,2019,569(7755):270-274.
    [81] DU W,FRANKEL T L,GREEN M,et al.IFN-γ signaling integrity in colorectal cancer immunity and immunotherapy[J].Cell Mol Immunol,2022,19(1):23-32.
    [82] IBá?EZ-MOLERO S,VAN VLIET A,POZNIAK J,et al.SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response[J].Oncoimmunology,2022,11(1):2139074.
    [83] FRANKEN A,BILA M,MECHELS A,et al.CD4+ T cell activation distinguishes response to anti-PD-L1+ antiCTLA4 therapy from anti-PD-L1 monotherapy[J].Immunity,2024,57(3):541-558.
    [84] WU R Q,LAO X M,CHEN D P,et al.Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma[J].Immunity,2023,56(1):180-192.
    [85] HU J,ZHANG L,XIA H,et al.Tumor microenvironment remodeling after neoadjuvant immunotherapy in nonsmall cell lung cancer revealed by single-cell RNA sequencing[J].Genome Med,2023,15(1):14.
    [86] LI J,WU C,HU H,et al.Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer[J].Cancer Cell,2023,41(6):1152-1169.e7.
    [87] BLOMBERG O S,SPAGNUOLO L,GARNER H,et al.IL-5-producing CD4+ T cells and eosinophils cooperate to enhance response to immune checkpoint blockade in breast cancer[J].Cancer Cell,2023,41(1):106-123.e10.
    [88] GUAN X,HU R,CHOI Y,et al.Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells [J].Nature,2024,627(8004):646-655.
    [89] YANG T,ZHANG S,YUAN H,et al.Platinum-based TREM2 inhibitor suppresses tumors by remodeling the immunosuppressive microenvironment[J].Angew Chem Int Ed Engl,2023,62(2):e202213337.
    [90] KEKLIKOGLOU I,CIANCIARUSO C,Gü? E,et al.Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models[J].Nat Cell Biol,2019,21(2):190-202.
    [91] MARILYNE L,JOAN S B,GORDON B M,et al.Therapy resistance:Opportunities created by adaptive responses to targeted therapies in cancer[J].Nat Rev Cancer,2022,22(6):323-339.
    [92] FELIX K,HRIDAYESH P,PETER E H,et al.Low-dose irradiation programs macrophage differentiation to an iNOS ?/M1 phenotype that orchestrates effective T cell immunotherapy[J].Cancer Cell,2013,24(5):589-602.
    [93] MU M,HUANG C X,QU C,et al.Targeting ferroptosiselicited inflammation suppresses hepatocellular carcinoma metastasis and enhances sorafenib efficacy[J].Cancer Res,2024,84(6):841-854.
    [94] ZHOU L,MUDIANTO T,MA X,et al.Targeting EZH2 enhances antigen presentation,antitumor immunity,and circumvents anti-PD-1 resistance in head and neck cancer [J].Clin Cancer Res,2020,26(1):290-300.
    [95] LI G,CHOI J E,KRYCZEK I,et al.Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy[J].Cancer Cell,2023,41(2):304-322.
    [96] CHEN D P,WANG J C,LIU Z Y,et al.miRNome targeting NF-κB signaling orchestrates macrophage-triggered cancer metastasis and recurrence[J].Mol Ther,2024,32(4):1110-1124.
    [97] LIU Y,LIANG X,YIN X,et al.Blockade of IDOkynurenine-AhR metabolic circuitry abrogates IFN-γ-induced immunologic dormancy of tumor-repopulating cells[J].Nat Commun,2017,8:15207.
    [98] ADAM-ARTIGUES A,VALENCIA SALAZAR L E,AGUIRRE-GHISO J A.Immune evasion by dormant disseminated cancer cells:A fermi paradox?[J].Cancer Cell,2024,42(1):13-15.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:341
  • 下载次数: 3214
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-01
  • 最后修改日期:2024-05-28
  • 在线发布日期: 2024-07-01
文章二维码