-
炎症小体是胞浆内模式识别受体 (Pattern Recognition Receptors,PRRs) 参与组装的多蛋白复合体,介导固有免疫防御并与多种疾病密切相关[1-4]。炎症小体通常由感应分子,如 NOD 样受体家族蛋白 (NOD-Like Receptors,NLRs),接头分子凋亡相关斑点样蛋白 (Apoptosis-Associated Speck-LikeProtein Containing a Caspase Recruitment Domain, ASC) 和效应分子 Caspase-1 组成。当细胞受到病原体相关分子模式 (Pathogen-Associated Molecular Patterns, PAMPs) 或危险信号相关分子模式 (Damage-Associated Molecular Patterns,DAMPs) 等刺激时,胞浆内部分模式识别受体参与组装形成多蛋白复合体并介导 Caspase-1 激活。Caspase-1 剪切前体形式的IL-1b和IL-18,使IL-1b和IL-18等促炎细胞因子成熟、释放,同时,Caspase-1 剪切膜穿孔蛋白 (Gasdermin D,GSDMD),诱发细胞焦亡 (见图1)。
-
根据感应分子的不同,炎症小体可分为多种类型 (见图1),如 NLRP1 (Nod-Like Receptor Protein 1) 炎症小体、NLRP3 (Nod-Like Receptor Protein 3) 炎症小体、AIM2 (Absent In Melanoma2) 炎症小体以及 NLRC4 (NLR Family CARD Domain Containing4) 炎症小体等[4]。其中,NLRP3炎症小体能够被多种病原体和刺激因子激活,并与多种疾病密切相关,因此受到广泛关注并得到深入的研究[4-5]。NLRP3 炎症小体激活可以分为两个阶段:信号1-启动阶段和信号2-激活阶段。启动阶段由模式识别受体介导信号激活,如 Toll 样受体 4 (TollLike Receptor 4,TLR4) 或者肿瘤坏死因子 (Tumor Necrosis Factor,TNF) 信号,进而通过 NF-kB 信号通路启动 NLRP3、IL-1b 等炎症小体组分的转录。激活阶段由PAMPs或DAMPs触发,如具有晶体特征的铝佐剂、硅石、木棉以及体内产生的胆固醇晶体、尿酸盐晶体 (Monosodium Urate,MSU) 和 b-淀粉样蛋白,还有某些病毒 (如流感病毒) 和胞内菌 (如李斯特菌) 等。在激活阶段中, NLRP3 炎症小体各个组分组成有活性的聚集体,介导 Caspase-1 激活和下游炎性因子的成熟、释放以及细胞焦亡 (见图1)。本文针对 NLRP3 炎症小体启动/激活阶段的调控机制进行系统性综述,并针对 NLRP3 激活相关的干预手段和工具进行探讨。
-
图1 炎症小体组装与激活示意图
-
Figure1 Schematic diagram of assembly and activation of inflammasome
-
1 翻译后修饰调控NLRP3炎症小体激活
-
1.1 泛素化修饰调控NLRP3炎症小体激活
-
泛素化/去泛素化是调控 NLRP3 炎症小体激活的重要翻译后修饰过程[6]。目前发现,多数靶向 NLRP3的E3泛素连接酶通过修饰NLRP3发挥对炎症小体激活的负调控作用。NLRP3 的 K63 泛素化修饰能够介导 NLRP3 与自噬接头蛋白 p62 相互作用,进而促进 NLRP3 的自噬降解[7]。E3 泛素连接酶 TRIM31 也能够结合并泛素化 NLRP3,介导 NLRP3 的蛋白酶体途径降解[8]。E3 泛素连接酶 RNF125 和 Cbl-b 能够催化 NLRP3 的 K63 和 K48 泛素化,同样介导NLRP3的蛋白酶体途径降解[9]。另外,多巴胺对 NLRP3 炎症小体的激活具有抑制作用,这是通过激活多巴胺 D1 受体 (Dopamine Receptor D1,DRD1) 信号通路并促进了E3泛素连接酶 MARCH7 介导的 NLRP3 泛素化和降解[10]。 Skp1-Cullin1-F-box E3 泛素连接酶的关键组分 Cullin1,被报道与 NLRP3 互作并且催化其 Lys689 位的泛素化[11]。该泛素化修饰并没有导致 NLPR3 降解,但是阻止了 NLRP3 激活。 ARIH2 介导 NLRP3 的 K48 和 K63 泛素化,通过调控 NLRP3 启动阶段活性抑制炎症小体激活[12]。E3 泛素连接酶 b-TrCP1 通过对 NLRP3 的 Lys380 进行 K27 泛素化修饰促进 NLRP3 蛋白酶体途径降解,而转录共激活因子 Yes 相关蛋白 (Yes-Associated Protein, YAP) 通过限制b-TrCP1与NLRP3的结合调控炎症小体激活[13]。E3泛素连接酶TRIM65通过与NLRP3 的 NACHT结构域结合,催化 NLRP3的 K48和 K63 泛素化,从而抑制 NLRP3 与 NEK7 的互作,并负调控炎症小体激活[14]。膜定位的 E3 泛素连接酶 AMFR 能够通过介导 NLRP3 泛素化,抑制 NLRP3 聚集和转位,进而负调控炎症小体激活[15]。此外,除了上述泛素化修饰负调控NLRP3炎症小体活化,也有研究表明,E3 泛素连接酶 pellino homolog2 (Pellino2) 能在 NLRP3 启动阶段通过泛素化 NLRP3 正调控炎症小体激活[16]。E3 泛素连接酶 HUWE1能够通过催化NLRP3的K27泛素化介导炎症小体组装,激活炎症小体并促进宿主抵抗细菌感染[17]。E3 泛素连接酶 RNF31 被报道能够通过与 NLRP3 互作,促进 NLRP3 的 K63 泛素化修饰,增强NLRP3蛋白稳定性,正调控炎症小体激活[18]。
-
去泛素化同样是对 NLRP3 活性调控的关键过程。BRISC 复合体 (Brcc36-Containing Isopeptide Complex) BRCC3通过调控NLRP3的去泛素化过程促进 NLRP3 激活[19]。去泛素化酶 USP7 (Ubiquitin Carboxyl-Terminal Hydrolase7) 和 USP47 被报道在炎症小体激活过程中发挥关键作用[20]。抑制 USP7 和 USP47 能够抑制 ASC 聚集体形成,抑制炎症小体激活,但是干预USP7/USP47并没有改变NLRP3 的K63和K48泛素化,所以其泛素化靶点和具体机制还有待进一步明确[20]。另外,本课题组前期研究发现,去泛素化酶 USP5 能够通过招募 MARCH7,促进NLRP3的K48泛素化并介导NLRP3的自噬-溶酶体途径降解[21]。UAF1 / USP1 (USP1-Associated Factor 1/USP1) 去泛素化酶作为脚手架蛋白,以非酶活依赖的方式调控炎症小体激活的分子机制[21]。去泛素化酶 OTUD6A (OTU Domain-Containing Protein 6A) 能够去除 NLRP3 的 K48 泛素化,抑制 NLRP3 降解,促进炎症小体激活[22]。去泛素化酶 OTUD6A 能够直接结合 NLRP3 的 NACHT结构域,特异性去除 NLRP3 的 Lys430 和 Lys689 位点的 K48 泛素化,增强 NLRP3 的蛋白稳定性[23]。去泛素化酶 UCHL5 (Ubiquitin Carboxyl-Terminal Hydrolase Isozyme L5) 在丙型肝炎病毒 (Hepatitis C Virus, HCV) 感染过程中能够介导肝细胞中 NLRP3 去泛素化过程,促进炎症小体激活[24]。
-
泛素化/去泛素化修饰调控 NLRP3 激活的机制复杂,不同位点、不同连接形式的泛素链功能不同,并且影响 NLRP3 的蛋白稳定性、降解过程、炎症小体组装、催化活性等多个方面。详细解析 NLRP3 的泛素化功能和分子机制,鉴定关键催化酶,并明确 NLRP3 各种泛素化修饰过程在不同感染或疾病情况下的特殊性,能够进一步助益阐明 NLRP3炎症小体激活的调控机制。
-
1.2 磷酸化修饰调控NLRP3炎症小体激活
-
磷酸化/去磷酸化是调控 NLRP3 炎症小体激活的重要翻译后修饰过程。在NLRP3炎症小体激活启动阶段早期, c-Jun 氨基末端激酶 (c-Jun N-Terminal Kinase1, JNK1) 介导的人源 NLRP3 Ser198 (鼠源 NLRP3 Ser194) 磷酸化对 NLRP3 去泛素化至关重要,并介导NLRP3自聚集,进而促进炎症小体激活[25]。人源 NLRP3 Ser295 (鼠源 NLRP3 Ser293) 磷酸化的功能目前存在争议。有研究表明,蛋白激酶 D (Protein Kinase D,PKD) 介导NLRP3 Ser295磷酸化,并促进NLRP3与ASC形成炎症小体复合体[26]。但是,另外有研究报道,蛋白激酶 A (Protein Kinase A,PKA) 介导的 NLRP3 Ser295 磷酸化通过抑制 NLRP3 NACHT 结构域的 ATPase 活性,抑制 NLRP3 炎症小体激活[27]。针对该磷酸化位点的双重作用还有待进一步解析。与此类似,布鲁顿酪氨酸激酶 (Bruton's tyrosine kinase, Btk) 也被报道在 NLRP3炎症小体激活过程中发挥双重作用。Btk通过介导ASC的Tyr144磷酸化促进 NLRP3 与 ASC 互作,进而促进炎症小体激活[28]。同时也有研究报道,Btk 抑制磷酸酶 (Phosphatase2 A,PP2A),PP2A对NLRP3 PYD结构域Ser5的去磷酸化[29]。该位点由AKT介导的磷酸化修饰抑制了 NLRP3 的 PYD 结构域互作,抑制了炎症小体的激活[30]。EPH 受体 A2 (EPH Receptor A2,EphA2),一个跨膜酪氨酸激酶,能够与 NLRP3 互作并且介导其 Tyr132 磷酸化[31]。该位点磷酸化会抑制 NLRP3炎症小体复合体组装[31]。另外,有研究报道 NLRP3 的 Tyr861 位点磷酸化通过激活 NLRP3 自噬降解抑制 NLRP3 炎症小体激活[32]。非受体型蛋白酪氨酸磷酸酶 22 (Protein Tyrosine PhosphataseNon-Receptor Type22,PTPN22) 能够去除 Tyr861 位点的磷酸化修饰,激活 NLRP3 炎症小体并促进 IL-1b分泌[32-33]。磷脂酰肌醇-3,4,5-三磷酸 3-磷酸酶和双特异性蛋白磷酸酶 (Phosphatidylinositol-3,4,5-Trisphosphate3-Phosphatase and Dual-Specificity Protein Phosphatase,PTEN) 在髓系细胞中能够去除 NLRP3 的 Tyr32 磷酸化修饰,促进 NLRP3 炎症小体激活[34]。PTEN-NLRP3 能够增强化疗敏感性,为肿瘤治疗提供新的借鉴[34]。
-
1.3 其他翻译后修饰调控NLRP3炎症小体激活
-
SUMO 化修饰 (SUMOylation) 也是调控 NLRP3 功能的重要翻译后修饰过程。E3 SUMO 蛋白连接酶 MAPL 介导的 NLRP3 的 SUMO 化修饰限制了 NLRP3 炎症小体的激活[35]。同时,有其他研究报道, SUMO1 介导的 NLRP3 的 Lys204 位点 SUMO 修饰促进了 ACS 寡聚化和 NLRP3 炎症小体激活[36]。E3 SUMO蛋白连接酶TRIM28被报道是调控 NLRP3 SUMO 化修饰的关键调控因子,其介导的 SUMO 化修饰稳定了 NLRP3 并促进炎症小体激活[37]。乙酰化修饰也被报道能够调控NLRP3炎症小体激活。NLRP3的Lys24乙酰化修饰对NLRP3激活发挥重要作用[38]。组蛋白乙酰转移酶 KAT5 被报道是介导NLRP3乙酰化修饰的乙酰转移酶,其催化作用促进 NLRP3 炎症小体激活[38]。另外,有研究报道,NAD依赖蛋白去乙酰化酶SIRT2介导的NLRP3 去乙酰化过程抑制了 NLRP3 炎症小体激活,从而缓解衰老引发的炎症和胰岛素抵抗[39]。近期的研究报道,ISG 修饰 (ISGylation) 对 NLRP3 的重要作用。HERCs (HECT Domain-and RCC1-like DomainContaining Proteins) 介导 NLRP3 的 ISGylation,并抑制其 K48 泛素化修饰和蛋白酶体途径降解[40]。 Herc6缺失缓解了病毒感染导致的NLPR3相关炎症反应[40]。
-
综上,翻译后修饰是调控 NLRP3 炎症小体激活的重要过程,并且已有众多修饰形式报道。探究这些翻译后修饰对 NLRP3 激活的调控机制以及与炎症相关疾病的关系等对理解炎症反应发生和炎症小体激活,以及开发炎症相关疾病的治疗手段等都有进一步的帮助。
-
2 NLRP3的互作分子调控炎症小体激活
-
NEK7 (Serine/Threonine-Protein Kinase Nek7) 是定位于中心体的丝/苏氨酸激酶,在有丝分裂过程中发挥重要作用[41]。近几年,一系列研究报道 NEK7 是调控 NLRP3 炎症小体激活的重要蛋白分子[41]。NEK7可以导致NLRP3寡聚体的解离,使得 NLRP3 PYD 结构域暴露出来,最终介导其与 ASC 组装成炎症小体复合物[42-44]。已有诸多研究报道, NLRP3 的翻译后修饰以及代谢小分子等能够调控 NEK7 与 NLRP3 的互作,进而干预炎症小体激活[41,45]。但是,NEK7 是否是 NLRP3 聚集体形成的绝对必需分子还存在争议。有研究报道,NLRP3 启动阶段存在一条依赖 IKKb 但不依赖 NEK7 的激活途径,并且在人源髓系细胞中得到深入研究[46]。
-
PELO (Protein Pelota Homolog),核糖体相关质量控制中的关键分子,能够通过调控 NLRP3 的 ATPase 活性,促进炎症小体的组装与激活[47]。 Nur77 (Nuclear Hormone Receptor NUR/77) 被报道能够直接结合胞浆LPS,进而调控非经典NLRP3 炎症小体的激活[48]。该研究提出 Nur77作为炎症小体激活过程中的LPS感受器的新功能[48]。压力应激小体蛋白 DDX3X (DEAD-Box Helicase3X) 能够与 NLRP3 互作并促进 NLRP3 炎症小体激活[49]。在细胞面对压力刺激时,压力应激小体和 NLRP3 炎症小体竞争 DDX3X,进而对决定细胞命运发挥关键作用[49]。硫氧还蛋白互作蛋白 (ThioredoxinInteracting Protein,TXNIP) 被报道能够以氧化还原反应依赖的方式与 NLRP3 互作,并调控 NLRP3 炎症小体激活[50]。MARK4能够与 NLRP3互作并介导其定位至微管组织中心,促进 NLRP3 炎症小体复合体的形成[51]。线粒体抗病毒信号蛋白 (Mito‐ chondrial Antiviral Signaling Protein,MAVS) 被报道在 RNA 病毒感染过程中,能够招募 NLRP3炎症小体并调控其激活过程[52]。另外,同样在RNA病毒感染过程中 (包括 Influenza Virus和 Encephalomyo‐ carditis Virus),线粒体外膜MFN2(Mitofusin 2)能够与NLRP3互作并诱导NLRP3炎症小体激活[53]。
-
NLRP3 的互作分子众多,其调控过程涉及 NLRP3 蛋白定位、蛋白复合体组装以及与其他生命过程的交叉等多个方面。进一步鉴定关键的 NLRP3 互作分子并阐明其机制,对理解 NLRP3 炎症小体激活有重要意义。
-
3 高尔基体反面膜囊解聚及内质网-内体膜接触点破坏调控NLRP3炎症小体激活
-
有研究表明,高尔基体及其磷脂分子在调控 NLRP3 炎症小体激活过程中发挥关键作用[54]。 NLRP3 在特定刺激下会诱导高尔基体反面膜囊 (Trans-Golgi,TGN) 解聚生成分散型高尔基体反面膜囊 (dispersed TGN,dTGN),并且 NLRP3 通过其多碱基区域 (Polybasic region) 与 dTGN 结合[54]。位于 dTGN 的磷脂酰肌醇-4-磷酸 (Phospha‐ tidylinositol-4-Phosphate,PI4P) 对与 NLRP3 互作发挥关键作用[54]。K+ 依赖或不依赖的刺激均会导致 dTGN解聚,说明该过程可能是炎症小体激活的关键汇集点[54]。另外,Zhang等[55] 研究报道,内质网内体膜接触点 (Endoplasmic Reticulum-Endosome Membrane Contact Sites,EECS) 的破坏对 NLRP3 激活发挥关键作用。EECS破坏这一过程导致 PI4P 在内体中积累,并削弱内体-高尔基体转运 (Endosome-to-Trans-Golgi network Trafficking,ETT) [55]。破坏 EECS 或者 ETT 过程能够增加内体 PI4P 累积,并促进炎症小体激活[55]。
-
4 线粒体功能改变调控NLRP3炎症小体激活
-
线粒体在激活 NLRP3 炎症小体过程中发挥关键作用。一系列激活炎症小体的刺激可以引起线粒体损伤和功能失调,同时,线粒体也可以通过释放 mtDNA、产生线粒体活性氧 (mitochondrial ROS, mtROS) 以及改变 NLRP3 定位等方式调控炎症小体激活,所以线粒体在炎症小体激活过程中发挥的功能是与多种刺激以及多种信号通路的激活密切相关的。mtDNA 被认为是有效的免疫刺激分子。多种 NLRP3 刺激剂如 ATP、 nigericin 等都会导致 mtDNA释放[56-57]。有研究报道,电压依赖性阴离子通道蛋白 (Voltage-Dependent Anion-Selective Channel Protein,VDAC) 对 mtDNA 释放发挥关键作用[58-59]。另外,研究表明,mtDNA 要先被氧化产生氧化型 mtDNA 才能激活 NLRP3 炎症小体[57,60],而未发生氧化的mtDNA倾向于激活AIM2炎症小体[60]。线粒体的心磷脂是带有明显负电荷的磷脂并且定位于线粒体内膜[61]。在细胞受到刺激时,心磷脂外翻并介导自噬和细胞死亡等过程。心磷脂被报道可以直接结合NLRP3的LRR结构域,并激活NLRP3炎症小体[62]。另外,有研究报道LPS刺激下,心磷脂可以结合 Caspase-1,并介导 NLRP3 炎症小体组装[63]。细胞色素 C 可以与 NLRP3 竞争结合心磷脂,调控炎症小体激活[64]。线粒体动力学相关蛋白也被报道与 NLRP3 炎症小体激活相关[65]。抑制 Drp1 或者过表达线粒体融合相关蛋白能够抑制炎症小体相关的炎症反应[65]。在 RNA 病毒感染过程中,线粒体外膜鸟苷三磷酸酶 MFN2 能够与 NLRP3 蛋白互作并激活炎症小体[53]。
-
5 溶酶体损伤激活NLRP3炎症小体
-
一些特殊物质,如尿酸、二氧化硅、明矾、铝剂等被报道能够引起溶酶体损伤,释放多种组织蛋白酶进入胞浆并进一步激活 NLRP3 炎症小体[66-70]。近期研究报道,组织蛋白酶B在多种炎症刺激下能够通过与NLRP3在内质网 (Endoplasmic Reticulum, ER) 结合,从而激活炎症小体,提示其功能的普遍性[69-70]。目前认为,溶酶体损伤还需要其他信号完成对NLRP3炎症小体的激活,特别是K+ 的外流。例如,Leu-Leu-O-Methyl Ester (LLME),一种可溶性的溶酶体亲和试剂,通过改变溶酶体膜的通透性和提高K+ 外流诱导炎症小体激活[71]。溶血磷脂酰胆碱 (Lysophosphatidylcholine,LPC) 是一种质膜的磷脂主要成分,在人源上皮细胞和单核细胞中通过破坏溶酶体和诱导K+ 外流激活炎症小体[72]。近期研究表明,质膜的破坏是溶酶体损伤导致炎症小体激活的关键[73]。在白色念珠菌 (Candida albicans) 感染期间,吞噬体通过招募溶酶体进行扩充并保持膜完整性。然而,阻止溶酶体融合,则导致吞噬体破裂、NLRP3 炎症小体的激活及宿主细胞死亡[74]。卵黄羧肽酶 (Vitellogenic Carboxypeptidase,VCP) 对维持溶酶体稳态和膜完整性发挥关键作用[75]。使用VCP抑制剂或者用遗传学手段敲低VCP均会促进 NLRP3炎症小体激活[75]。另外,一些溶酶体定位的蛋白也表现出特殊的作用。溶酶体定位的蛋白复合体Lamtor1,能够通过与HDAC6互作促进NLRP3 炎症小体的激活[76]。
-
6 免疫代谢过程及代谢物调控NLRP3炎症小体激活
-
免疫细胞的代谢重编程过程在炎症反应和炎症小体激活中发挥关键作用[77-78]。糖酵解作为能量代谢的中心环节在 NLRP3 炎症小体激活过程中发挥关键作用。在巨噬细胞中,糖酵解水平升高会导致琥珀酸增加,进而通过稳定HIF-1a增加IL-1b的表达[79]。同样,糖酵解还会激活线粒体呼吸链,提高 mtROS 的产生量,促进 NLRP3 炎症小体激活[80]。另外,丙酮酸激酶 M2 (Pyruvate Kinase Isozyme M2, PKM2) 介导的有氧糖酵解通过磷酸化 EIF2AK2/PKR 促进炎症小体激活[81] 。在烧伤后的炎症反应中,NLRP3 炎症小体的激活与葡萄糖转运蛋白 1 (Glucose Transporter 1,GLUT1) 表达和糖酵解相关[82]。抑制异常的糖代谢能够减弱NLRP3 炎症小体的激活[82]。糖酵解关键酶己糖激酶(Hexokinase,HK) 与NLRP3炎症小体激活密切相关。研究报道,在细菌感染过程中,N-乙酰葡糖胺 (N-acetylglucosamine),一种细菌细胞壁组分,能抑制 HK 并使其从线粒体外膜解离[83]。HK 细胞定位的改变导致 NLRP3 炎症小体激活,并且该过程独立于K+ 外流和细胞焦亡[83]。近期研究揭示,HK2 能够与线粒体 VDAC 解离,激活三磷酸肌醇受体,进而导致钙离子从内质网释放进入线粒体,激活 VDAC寡聚化,释放mtDNA促进炎症小体激活[59]。另外研究报道,在饥饿状态下,Candida albicans 会与宿主巨噬细胞竞争葡萄糖,进而激活 NLRP3 炎症小体[84]。但巨噬细胞中的葡萄糖代谢是如何决定体内炎症小体活化及相关分子机制仍有待进一步研究。
-
脂代谢同样在炎症小体激活过程中发挥关键作用。研究报道,胆固醇结晶能够激活炎症小体,并且脂代谢的失调在炎症小体激活过程中发挥重要作用[85]。胆固醇通过溶酶体胆固醇转运蛋白 NPC1 (Niemann-Pick C1) 介导的从溶酶体到内质网的转运过程,与 NLRP3 炎症小体激活密切相关[86]。另外,胆固醇稳态调控蛋白 SCAP-SREBP2 (Sterol Regulatory Element-Binding Protein CleavageActivating Protein-Sterol Regulatory Element-Binding Protein 2) 与 NLRP3 的互作,对 NLRP3 转运至高尔基体发挥了关键作用[87]。事实上,一些脂类,包括 PI4P,对 NLRP3 的聚集和激活均发挥了关键作用[54,85]。
-
与上述促进或者激活 NLRP3 炎症小体的代谢物或代谢过程不同,免疫代谢物衣康酸能够通过调控糖代谢关键酶Fructose-Bisphosphate Aldolase A和 GAPDH 抑制 LPS 引起的 IL-1b 分泌,发挥抗炎作用[88-89]。同时,衣康酸通过抑制 NEK7和 NLRP3互作抑制 NLRP3 炎症小体激活[90]。β-羟基丁酸 (bHydroxybutyrate,BHB) 被报道对 NLRP3 炎症小体激活有抑制作用,提示酮体能够调控炎症小体激活,但是该代谢物对炎症小体激活的具体调控机制还有待进一步研究[91-92]。b-葡聚糖 (b-glucan) 介导的代谢重编程能够通过抑制 K+ 外流和 mtROS 的产生,抑制ASC寡聚化和NLRP3炎症小体的激活[93]。 b-Glucan 的炎症抑制功能对 NLRP3 炎症小体过度激活的冷炎素相关周期综合征 (Cryopyrin-Associated Periodic Syndromes,CASPs) 患者表现出潜在的治疗作用[93]。Cbl-b 被报道能通过泛素蛋白酶体途径降解 NLRP3 以及 NLRP3 炎症小体活化关键蛋白 Pyk2[9,94]。另外,Src kinase-Cbl 信号通路通过抑制 GLUT1 表达和糖代谢过程对 NLRP3 炎症小体激活发挥负调控作用[80,94]。以上研究说明,Cbl-b 能够通过多条途径负调控 NLRP3 炎症小体激活。
-
7 靶向干预 NLRP3 炎症小体激活的小分子/药剂/多肽
-
已有一系列靶向 NLRP3 的抑制剂/激活剂被报道。NLRP3 的 NACHT 结构域介导的 ATPase 活性对 NLRP3 发挥功能至关重要,是目前设计抑制剂的重要靶点。 MCC950 / CRID3 是典型的靶向 NLRP3 的 NACHT 结构域的二芳基磺酰脲类抑制剂,其与 NACHT结构域的 Walker B区域互作并抑制 ATP水解[95-96]。MCC950介导的 NLRP3结构改变使其由活性构象转变为非活性构象,并在多种疾病模型中被报道能够显著抑制炎症小体激活[97]。然而有研究报道,MCC950/CRID3 尽管能抑制野生型 NLRP3,但并不能抑制 CASP 相关的 NLRP3 突变体[98]。BOT-4-One 能够通过烷基化 NLRP3 抑制其 ATPase 活性,进而阻断 NLRP3 炎症小体复合物组装[99]。CFTR(inh)-172 类似物 CY-09 被报道能够通过结合NLRP3的NACHT结构域抑制NLRP3的ATPase 活性[100]。OLT1177 也被报道能够通过结合 NLRP3 抑制其 ATPase 活性,抑制 ASC 聚集和炎症小体激活[101]。Tranilast,一种色氨酸代谢类似物,能够以 ATPase 活性非依赖的方式调控 NLRP3 寡聚化,抑制炎症小体激活[102]。
-
NEK7因为其在介导NLRP3炎症小体激活过程中的关键作用也得到了广泛关注。NEK7和NLRP3 的互作过程成为设计和筛选 NLRP3 炎症小体抑制剂/激活剂的重要靶点。目前,有部分传统中药成分和天然产物被报道能够调控 NEK7 和 NLRP3 互作,进而干预炎症小体激活。人参提取的天然产物人参皂苷Rg3能够通过干预NEK7和NLRP3的互作抑制炎症小体激活[103]。冬凌草甲素是传统中药冬凌草中的有效成分,通过共价结合 NLRP3 的 NACHT 结构域 Cys279 抑制 NLRP3 和 NEK7 的互作[104]。青蒿素也被报道通过靶向 NEK7-NLRP3 互作,在尿酸诱导的炎症小体激活模型中表现出抑制作用[105]。另外,一种去谷胱甘肽化酶的抑制剂, C1-27 能够通过抑制 NEK7 和 NLRP3 互作,干预 NLRP3炎症小体激活[106]。
-
KN3014被报道通过靶向NLRP3的PYD结构域抑制 NLRP3 和 ASC 的互作[107]。KN3014 在 MuckleWells 综合征患者的外周血单核细胞 (PeripheralBlood Mononuclear Cell,PMBC) 中表现出对 ASC 斑点形成的抑制作用[107]。另外有研究报道,b胡萝卜素能够通过与 NLRP3 的 PYD 结构域结合,抑制 IL-1b 产生[108]。最近还有研究报道,多肽能够抑制 NLRP3 的组装、ASC 寡聚化、Caspase-1 激活和 IL-1b产生,且部分多肽表现出对 NLRP3炎症小体的特异性作用[109]。
-
尽管目前有很多针对 NLRP3 的干预工具被报道,但是这些抑制剂、激活剂、多肽等的特异性和是否存在脱靶效应等都有待进一步研究。同时,进一步解析这些炎症小体干预工具的作用机制也能为这些工具的有效利用提供新的思路和安全保障。
-
8 总结
-
本文从 NLRP3 的翻译后修饰、互作分子、细胞定位改变以及与 NLRP3 功能相关的代谢过程和代谢物等多个方面综述了 NLRP3 炎症小体激活的调控机制研究进展,并对现有的 NLRP3 炎症小体干预工具进行了总结。这些调控过程、调控分子和干预手段都对 NLRP3 炎症小体的激活产生重要影响,但是这些因素之间是否存在协同和拮抗等相互作用仍有待进一步研究。同时,在特殊刺激或者疾病状态下,是否存在特异性的调控过程对 NLRP3 炎症小体激活发挥主要作用,仍有待进一步探索。另外,针对 NLRP3 炎症小体的干预工具,如抑制剂、激活剂、多肽等,其作用的靶向性、特异性、安全性以及成药性等都有待进一步明确。本文通过综述 NLRP3 炎症小体激活的调控机制,以期加深人们对炎症小体激活以及炎症反应的理解,为治疗炎症相关疾病提供新的借鉴。
-
参考文献
-
[1] SCHRODER K,SCHOPP J.The inflammasomes[J].Cell,2010,140(6):821-832.
-
[2] STROWIG T,HENAO-MEJIA J,ELINAV E.Inflammasomes in health and disease[J].Nature,2012,481(7381):278-286.
-
[3] GUO H,CALLAWAY J B,TING J P.Inflammasomes:Mechanism of action,role in disease,and therapeutics[J].Nat Med,2015,21(7):677-687.
-
[4] PAIK S,KIM J K,SILWAL P,et al.An update on the regulatory mechanisms of NLRP3 inflammasome activation [J].Cell Mol Immunol,2021,18(5):1141-1160.
-
[5] SWANSON K V,DENG M,TING J P.The NLRP3 inflammasome:Molecular activation and regulation to therapeutics[J].Nat Rev Immunol,2019,19(8):477-489.
-
[6] LOPEZ-CASTEJON G.Control of the inflammasome by the ubiquitin system[J].FEBS J,2020,287(1):11-26.
-
[7] ZHOU Z,ZHU X,YIN R,et al.K63 ubiquitin chains target NLRP3 inflammasome for autophagic degradation in ox-LDL-stimulated THP-1 macrophages[J].Aging,2020,12(2):1747-1759.
-
[8] SONG H,LIU B,HUAI W,et al.The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3[J].Nat Commun,2016,7:13727.
-
[9] TANG J,TU S,LIN G,et al.Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia[J].J Exp Med,2020,217(4):e20182091.
-
[10] YAN Y,JIANG W,LIU L,et al.Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome[J].Cell,2015,160(1-2):62-73.
-
[11] WAN P,ZHANG Q,LIU W,et al.Cullin1 binds and promotes NLRP3 ubiquitination to repress systematic inflammasome activation[J].FASEB J,2019,33(4):5793-5807.
-
[12] KAWASHIMA A,KARASAWA T,TAGO K,et al.ARIH2 ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages[J].J Immunol,2017,199(10):3614-3622.
-
[13] WANG D,ZHANG Y,XU X,et al.YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3[J].Nat Commun,2021,12(1):2674.
-
[14] TANG T,LI P,ZHOU X,et al.The E3 ubiquitin ligase TRIM65 negatively regulates inflammasome activation through promoting ubiquitination of NLRP3[J].Front Immunol,2021,12:741839.
-
[15] XU T,YU W,FANG H,et al.Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation [J].Cell Death Differ,2022,29(8):1582-1595.
-
[16] HUMPHRIES F,BERGIN R,JACKSON R,et al.The E3 ubiquitin ligase pellino2 mediates priming of the NLRP3 inflammasome[J].Nat Commun,2018,9(1):1560.
-
[17] GUO Y,LI L,XU T,et al.HUWE1 mediates inflammasome activation and promotes host defense against bacterial infection[J].J Clin Invest,2020,130(12):6301-6316.
-
[18] WANG P,TANG C T,LI J,et al.The E3 ubiquitin ligase RNF31 mediates the development of ulcerative colitis by regulating NLRP3 inflammasome activation[J].Int Immunopharmacol,2023,125(Pt B):111194.
-
[19] PY B F,KIM M S,VAKIFAHMETOGLU-NORBERG H,et al.Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity[J].Mol Cell,2013,49(2):331-338.
-
[20] PALAZON-RIQUELME P,WORBOYS J D,GREEN J,et al.USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation[J].EMBO Rep,2018,19(10):e44766.
-
[21] CAI B,ZHAO J,ZHANG Y,et al.USP5 attenuates NLRP3 inflammasome activation by promoting autophagic degradation of NLRP3[J].Autophagy,2022,18(5):990-1004.
-
[22] SONG H,ZHAO C,YU Z,et al.UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression[J].Nat Commun,2020,11(1):6042.
-
[23] LIU X,FANG Y,LV X,et al.Deubiquitinase OTUD6A in macrophages promotes intestinal inflammation and colitis via deubiquitination of NLRP3[J].Cell Death Differ,2023,30(6):1457-1471.
-
[24] RAMACHANDRAN A,KUMAR B,WARIS G,et al.Deubiquitination and activation of the NLRP3 inflammasome by UCHL5 in HCV-infected cells[J].Microbiol Spectr,2021,9(1):e0075521.
-
[25] SONG N,LIU Z S,XUE W,et al.NLRP3 phosphorylation is an essential priming event for inflammasome activation [J].Mol Cell,2017,68(1):185-197.e186.
-
[26] ZHANG Z,MESZAROS G,HE W T,et al.Protein kinase D at the golgi controls NLRP3 inflammasome activation[J].J Exp Med,2017,214(9):2671-2693.
-
[27] MORTIMER L,MOREAU F,MACDONALD J A,et al.NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations[J].Nat Immunol,2016,17(10):1176-1186.
-
[28] ITO M,SHICHITA T,OKADA M,et al.Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury[J].Nat Commun,2015,6:7360.
-
[29] MAO L,KITANI A,HIEJIMA E,et al.Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1beta-mediated colitis[J].J Clin Invest,2020,130(4):1793-1807.
-
[30] ZHAO W,SHI C S,HARRISON K,et al.AKT regulates NLRP3 inflammasome activation by phosphorylating NLRP3 serine 5[J].J Immunol,2020,205(8):2255-2264.
-
[31] ZHANG A,XING J,XIA T,et al.EphA2 phosphorylates NLRP3 and inhibits inflammasomes in airway epithelial cells[J].EMBO Rep,2020,21(7):e49666.
-
[32] SPALINGER M R,LANG S,GOTTIER C,et al.PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner[J].Autophagy,2017,13(9):1590-1601.
-
[33] SPALINGER M R,KASPER S,GOTTIER C,et al.NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22[J].J Clin Invest,2016,126(11):4388.
-
[34] HUANG Y,WANG H,HAO Y,et al.Myeloid PTEN promotes chemotherapy-induced NLRP3-inflammasome activation and antitumour immunity[J].Nat Cell Biol,2020,22(6):716-727.
-
[35] BARRY R,JOHN S W,LICCARDI G,et al.SUMOmediated regulation of NLRP3 modulates inflammasome activity[J].Nat Commun,2018,9(1):3001.
-
[36] SHAO L,LIU Y,WANG W,et al.SUMO1 SUMOylates and SENP3 deSUMOylates NLRP3 to orchestrate the inflammasome activation[J].FASEB J,2020,34(1):1497-1515.
-
[37] QIN Y,LI Q,LIANG W,et al.TRIM28 SUMOylates and stabilizes NLRP3 to facilitate inflammasome activation [J].Nat Commun,2021,12(1):4794.
-
[38] ZHANG Y,LUO L,XU X,et al.Acetylation is required for full activation of the NLRP3 inflammasome[J].Nat Commun,2023,14(1):8396.
-
[39] HE M,CHIANG H H,LUO H,et al.An acetylation switch of the NLRP3 inflammasome regulates agingassociated chronic inflammation and insulin resistance[J].Cell Metab,2020,31(3):580-591.e585.
-
[40] QIN Y,MENG X,WANG M,et al.Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation[J].J Clin Invest,2023,133(20):e161935.
-
[41] ZHAO N,LI C C,DI B,et al.Recent advances in the NEK7-licensed NLRP3 inflammasome activation:Mechanisms,role in diseases and related inhibitors[J].J Autoimmun,2020,113:102515.
-
[42] SHI H,WANG Y,LI X,et al.NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7,a new inflammasome component[J].Nat Immunol,2016,17(3):250-258.
-
[43] SHARIF H,WANG L,WANG W L,et al.Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome[J].Nature,2019,570(7761):338-343.
-
[44] XIAO L,MAGUPALLI V G,WU H.Cryo-EM structures of the active NLRP3 inflammasome disc[J].Nature,2023,613(7944):595-600.
-
[45] WANG J,CHEN S,LIU M,et al.NEK7:a new target for the treatment of multiple tumors and chronic inflammatory diseases[J].Inflammopharmacology,2022,30(4):1179-1187.
-
[46] SCHMACKE N A,O'DUILL F,GAIDT M M,et al.IKKbeta primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network[J].Immunity,2022,55(12):2271-2284.e2277.
-
[47] WU X,YANG Z H,WU J,et al.Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity[J].Immunity,2023,56(5):926-943.e927.
-
[48] ZHU F,MA J,LI W,et al.The orphan receptor Nur77 binds cytoplasmic LPS to activate the non-canonical NLRP3 inflammasome[J].Immunity,2023,56(4):753-767.e758.
-
[49] SAMIR P,KESAVARDHANA S,PATMORE D M,et al.DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome[J].Nature,2019,573(7775):590-594.
-
[50] ZHOU R,TARDIVEL A,THORENS B,et al.Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J].Nat Immunol,2010,11(2):136-140.
-
[51] LI X,THOME S,MA X,et al.MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism[J].Nat Commun,2017,8:15986.
-
[52] SUBRAMANIAN N,NATARAJAN K,CLATWORTHY M R,et al.The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation[J].Cell,2013,153(2):348-361.
-
[53] ICHINOHE T,YAMAZAKI T,KOSHIBA T,et al.Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection[J].Proc Natl Acad Sci U S A,2013,110(44):17963-17968.
-
[54] CHEN J,CHEN Z J.PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation[J].Nature,2018,564(7734):71-76.
-
[55] ZHANG Z,VENDITTI R,RAN L,et al.Distinct changes in endosomal composition promote NLRP3 inflammasome activation[J].Nat Immunol,2023,24(1):30-41.
-
[56] RILEY J S,TAIT S W.Mitochondrial DNA in inflammation and immunity[J].EMBO Rep,2020,21(4):e49799.
-
[57] SHIMADA K,CROTHER T R,KARLIN J,et al.Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J].Immunity,2012,36(3):401-414.
-
[58] KIM J,GUPTA R,BLANCO L P,et al.VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease[J].Science,2019,366(6472):1531-1536.
-
[59] BAIK S H,RAMANUJAN V K,BECKER C,et al.Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation[J].Sci Immunol,2023,8(84):eade7652.
-
[60] ZHONG Z,LIANG S,SANCHEZ-LOPEZ E,et al.New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J].Nature,2018,560(7717):198-203.
-
[61] KAGAN V E,CHU C T,TYURINA Y Y,et al.Cardiolipin asymmetry,oxidation and signaling[J].Chem Phys Lipids,2014,179:64-69.
-
[62] IYER S S,HE Q,JANCZY J R,et al.Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation [J].Immunity,2013,39(2):311-323.
-
[63] ELLIOTT E I,MILLER A N,BANOTH B,et al.Cutting edge:Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming[J].J Immunol,2018,200(9):3047-3052.
-
[64] SHI C S,KEHRL J H.Cytochrome C negatively regulates NLRP3 inflammasomes[J].PLoS One,2016,11(12):e0167636.
-
[65] CHANG Y H,LIN H Y,SHEN F C,et al.The causal role of mitochondrial dynamics in regulating innate immunity in diabetes[J].Front Endocrinol,2020,11:445.
-
[66] HORNUNG V,BAUERNFEIND F,HALLE A,et al.Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J].Nat Immunol,2008,9(8):847-856.
-
[67] ORLOWSKI G M,COLBERT J D,SHARMA S,et al.Multiple cathepsins promote pro-IL-1beta synthesis and NLRP3-mediated IL-1beta activation[J].J Immunol,2015,195(4):1685-1697.
-
[68] ZHANG Y,CHEN Y,ZHANG Y,et al.Contribution of cathepsin B-dependent Nlrp3 inflammasome activation to nicotine-induced endothelial barrier dysfunction[J].Eur J Pharmacol,2019,865:172795.
-
[69] SVADLAKOVA T,HUBATKA F,TURANEK KNOTIGOVA P,et al.Proinflammatory effect of carbon-based nanomaterials:In vitro study on stimulation of inflammasome NLRP3 via destabilisation of lysosomes[J].Nanomaterials(Basel),2020,10(3):418.
-
[70] CHEVRIAUX A,PILOT T,DERANGERE V,et al.Cathepsin B is required for NLRP3 inflammasome activation in macrophages,through NLRP3 interaction[J].Front Cell Dev Biol,2020,8:167.
-
[71] KATSNELSON M A,LOZADA-SOTO K M,RUSSO H M,et al.NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption:Roles for K+ efflux and Ca2+ influx [J].Am J Physiol Cell Physiol,2016,311(1):C83-C100.
-
[72] CORREA R,SILVA LFF,RIBEIRO DJS,et al.Lysophosphatidylcholine induces NLRP3 inflammasomemediated foam cell formation and pyroptosis in human monocytes and endothelial cells[J].Front Immunol,2019,10:2927.
-
[73] BECKWITH K S,BECKWITH M S,ULLMANN S,etal.Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection[J].Nat Commun,2020,11(1):2270.
-
[74] WESTMAN J,WALPOLE GFW,KASPER L,et al.Lysosome fusion maintains phagosome integrity during fungal infection[J].Cell Host Microbe,2020,28(6):798-812.e796.
-
[75] SHARMA A,DHAVALE D D,KOTZBAUER P T,et al.VCP inhibition augments NLRP3 inflammasome activation[J].Inflammation,2024.
-
[76] TSUJIMOTO K,JO T,NAGIRA D,et al.The lysosomal ragulator complex activates NLRP3 inflammasome in vivo via HDAC6[J].EMBO J,2023,42(1):e111389.
-
[77] MEYERS A K,ZHU X.The NLRP3 inflammasome:Metabolic regulation and contribution to inflammaging [J].Cells,2020,9(8):1808.
-
[78] RUSSELL D G,HUANG L,VANDERVEN B C.Immunometabolism at the interface between macrophages and pathogens[J].Nat Rev Immunol,2019,19(5):291-304.
-
[79] TANNAHILL G M,CURTIS A M,ADAMIK J,et al.Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha[J].Nature,2013,496(7444):238-242.
-
[80] LIN H C,CHEN Y J,WEI Y H,et al.Cbl Negatively regulates NLRP3 inflammasome sctivation through GLUT1-dependent glycolysis inhibition[J].Int J Mol Sci,2020,21(14):5104.
-
[81] XIE M,YU Y,KANG R,et al.PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation[J].Nat Commun,2016,7:13280.
-
[82] VINAIK R,BARAYAN D,AUGER C,et al.Regulation of glycolysis and the Warburg effect in wound healing[J].JCI Insight,2020,5(17):e138949.
-
[83] WOLF A J,REYES C N,LIANG W,et al.Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan[J].Cell,2016,166(3):624-636.
-
[84] TUCEY T M,VERMA J,OLIVIER FAB,et al.Metabolic competition between host and pathogen dictates inflammasome responses to fungal infection[J].PLoS Pathog,2020,16(8):e1008695.
-
[85] ANAND P K.Lipids,inflammasomes,metabolism,and disease[J].Immunol Rev,2020,297(1):108-122.
-
[86] DE LA ROCHE M,HAMILTON C,MORTENSEN R,et al.Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation[J].J Cell Biol,2018,217(10):3560-3576.
-
[87] GUO C,CHI Z,JIANG D,et al.Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages[J].Immunity,2018,49(5):842-856.e847.
-
[88] LIAO S T,HAN C,XU D Q,et al.4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert antiinflammatory effects[J].Nat Commun,2019,10(1):5091.
-
[89] QIN W,QIN K,ZHANG Y,et al.S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate[J].Nat Chem Biol,2019,15(10):983-991.
-
[90] HOOFTMAN A,ANGIARI S,HESTER S,et al.The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation[J].Cell Metab,2020,32(3):468-478.e467.
-
[91] KIM S R,LEE S G,KIM S H,et al.SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease[J].Nat Commun,2020,11(1):2127.
-
[92] YOUM Y H,NGUYEN K Y,GRANT R W,et al.The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J].Nat Med,2015,21(3):263-269.
-
[93] CAMILLI G,BOHM M,PIFFER A C,et al.Beta-Glucaninduced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies[J].J Clin Invest,2020,130(9):4561-4573.
-
[94] CHUNG I C,YUAN S N,OUYANG C N,et al.Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation[J].Cell Death Dis,2018,9(11):1109.
-
[95] COLL R C,ROBERTSON A A,CHAE J J,et al.A smallmolecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases[J].Nat Med,2015,21(3):248-255.
-
[96] COLL R C,HILL J R,DAY C J,et al.MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition[J].Nat Chem Biol,2019,15(6):556-559.
-
[97] TAPIA-ABELLAN A,ANGOSTO-BAZARRA D,MARTINEZ-BANACLOCHA H,et al.MCC950 closes the active conformation of NLRP3 to an inactive state[J].Nat Chem Biol,2019,15(6):560-564.
-
[98] VANDE WALLE L,STOWE I B,SACHA P,et al.MCC950/CRID3 potently targets the NACHT domain of wildtype NLRP3 but not disease-associated mutants for inflammasome inhibition[J].PLoS Biol,2019,17(9):e3000354.
-
[99] SHIM D W,SHIN W Y,YU S H,et al.BOT-4-one attenuates NLRP3 inflammasome activation:NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination[J].Sci Rep,2017,7(1):15020.
-
[100] JIANG H,HE H,CHEN Y,et al.Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders[J].J Exp Med,2017,214(11):3219-3238.
-
[101] MARCHETTI C,SWARTZWELTER B,GAMBONI F,et al.OLT1177,a beta-sulfonyl nitrile compound,safe in humans,inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation[J].Proc Natl Acad Sci USA,2018,115(7):E1530-E1539.
-
[102] DARAKHSHAN S,POUR A B.Tranilast:A review of its therapeutic applications[J].Pharmacol Res,2015,91:15-28.
-
[103] SHI Y,WANG H,ZHENG M,et al.Ginsenoside Rg3 suppresses the NLRP3 inflammasome activation through inhibition of its assembly[J].FASEB J,2020,34(1):208-221.
-
[104] HE H,JIANG H,CHEN Y,et al.Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity [J].Nat Commun,2018,9(1):2550.
-
[105] KIM S K,CHOE J Y,PARK K Y.Anti-inflammatory effect of artemisinin on uric acid-induced NLRP3 inflammasome activation through blocking interaction between NLRP3 and NEK7[J].Biochem Biophys Res Commun,2019,517(2):338-345.
-
[106] HUGHES M M,HOOFTMAN A,ANGIARI S,et al.Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation[J].Cell Rep,2019,29(1):151-161.e155.
-
[107] KANEKO N,KURATA M,YAMAMOTO T,et al.KN3014,a piperidine-containing small compound,inhibits auto secretion of IL-1beta from PBMCs in a patient with Muckle-Wells syndrome[J].Sci Rep,2020,10(1):13562.
-
[108] YANG G,LEE H E,MOON S J,et al.Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis[J].Arthritis Rheumatol,2020,72(7):1192-1202.
-
[109] SUSJAN P,LAINSCEK D,STRMSEK Z,et al.Selective inhibition of NLRP3 inflammasome by designed peptide originating from ASC[J].FASEB J,2020,34(8):11068-11086.
-
摘要
NLRP3炎症小体是固有免疫系统的重要组成部分,在抵抗病原体感染及危险信号刺激过程中发挥关键作用。同时,NLRP3炎症小体的异常激活也与糖尿病、阿尔茨海默病、红斑狼疮等疾病密切相关。因此,调控和干预炎症小体激活过程对维持机体免疫稳态和发挥免疫功能有重要作用。本文从NLRP3的翻译后修饰、互作分子、细胞器和细胞定位改变以及与NLRP3功能相关的代谢过程和代谢物等多个方面综述了NLRP3炎症小体激活的调控机制研究进展,以期为理解炎症小体激活和炎症反应的发生,以及治疗炎症相关疾病提供新的借鉴。
Abstract
NLRP3 inflammasome is a vital component of the innate immune system, crucial in combatting pathogenic infections and responding to danger signals. At the same time, the aberrant activation of NLRP3 inflammasome is intricately linked with diseases such as diabetes, Alzheimer's disease, and lupus erythematosus. Therefore, regulation and intervention of inflammasome activation processes are pivotal for sustaining immune homeostasis and functionality. This review comprehensively summarizes recent progress in elucidating the regulatory mechanisms governing NLRP3 inflammasome activation, including post-translational modifications of NLRP3, interacting molecules, alterations in organelle and cellular localization, as well as metabolic processes and associated metabolites associated with NLRP3 function. Its objective is to offer novel perspectives on understanding inflammasome activation occurrences, inflammatory responses, and therapeutic approaches for inflammation-related disorders.